
Going parametric in EMT studies:  
EDF methods and tools for input data uncertainties,  

sensitivity analysis and parameter identification 
 

Manuel Martinez-Duro 

 

 

Abstract— This paper presents EDF’s approach to input data 

uncertainty, system variability, sensitivity analysis and 

parameter identification in EMT studies. After pointing out the 

limitations of the traditional treatment of these questions, we 

present the new methods that have been adopted and the tool 

that has been developed for engineers using EMTP. A final 

example case illustrates their advantages. 
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I.  INTRODUCTION 

In recent years, input data uncertainty in electromagnetic 

transient (EMT) studies has been a growing concern at EDF. 

Indeed, worst-case strategies traditionally used to deal with 

data uncertainties are inefficient and not always conservative. 

This concern seems to be a global trend, as data uncertainty 

was one of the important topics at the Discussion Group 

Meeting of Study Committee C4 at the 2018 CIGRE 

Session [1].  

At EDF, a significant effort has been made lately in order 

to establish a sound theoretical framework to deal with the 

problem and to develop a software solution that can be easily 

used by EMTP users. In addition to data uncertainties, this 

effort has included three other related problems: system 

structure variability, sensitivity analysis and parameter 

identification. As all these problems imply that some of the 

system parameters have several potential values and/or that a 

part of the system structure has several variants, we will 

encompass all of them with the expression parametric studies. 

This paper aims to share EDF’s approach to these 

problems, both the adopted theoretical methodology and the 

characteristics of the software solution that has been 

implemented.  

This software implementation is a front-end standalone 

application that works with EMTP-RV and has been called 

PAMSUITE (for Parametric Modelling Suite). This tool is 

now extensively used at EDF in all kinds of studies: 

transformer energization, ferroresonance, geomagnetically 

induced currents, lightning and switching overvoltages, power 

quality, power plant stability, and others.  

Some of these studies have already been published 

[2][3][4][5][6]; others will be published in the future. 
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However, due to lack of space, these papers cannot provide 

the details of the parametric methods and tools that they use. 

The aim of this paper is also to document them in full detail. 

II.  PARAMETRIC PROBLEMS:  

INPUT DATA UNCERTAINTIES, SYSTEM VARIABILITY, 

SENSITIVITY ANALYSIS, PARAMETER IDENTIFICATION  

Ideally, in an EMT study, the physical system under study 

is well defined, i. e. both the structure of the system and the 

characteristics of its components are perfectly defined and 

known.  

However, this ideal situation is far from reality. Quite 

frequently, the model parameter values and/or the model 

structure are partially undefined. On the one hand, very often 

the component’s characteristics and thus their model 

parameter values are not exactly known but rather known with 

some inaccuracy or not known at all; for example, the circuit-

breaker closing angle in switching studies or the tower footing 

resistance in lightning studies; we will call this the uncertainty 

of the system parameters.  

On the other hand, the system may present several possible 

structures; these may be related to contingencies like line or 

generator outages, but also to different network 

configurations; we will call this the variability of the system 

structure. 

Uncertainty and variability are often linked to another 

question: the relative influence on the results of each of the 

parameters and/or configurations, i. e. the sensitivity analysis, 

which may be the main part of the study, for example if the 

goal is to determine the best investment strategy to reduce 

fault probability. 

Finally, the component’s characteristics may be given 

indirectly, for example through field measurements that do not 

directly provide the model parameter values; to take advantage 

of this implicit input data, a parameter identification (or data 

matching, or data assimilation) process must be implemented 

in order to extract the relevant information for the system 

model. 

III.  TRADITIONAL SIMPLIFYING APPROACH 

To cope with the parameter uncertainty, the structure 

variability and the implicitness of the input data, several 

strategies have been used in the past. For some very particular 

types of studies, specific front-end applications using EMTP-

like simulators may have been developed, like LIPS for the 

evaluation of the lightning performance of overhead-lines [7]. 

However, the majority of EMT studies do not fall into these 



types and thus the engineer needs to provide a solution from 

scratch.  

In these situations, some advanced engineering teams may 

have programmed scripts for the particular study case at stake. 

These scripts run batch simulations of several sets of 

parameters (for instance [8][9][10][11]). This, however, has 

practical drawbacks that we will point out in section IV: it 

applies only to a particular study case, it is very time 

consuming, it requires advanced skills in programming and 

statistics and it is prone to errors.  

For these reasons, in the vast majority of cases, the usual 

engineering approach to uncertainty, variability and 

implicitness of the input data consists in simplifying the 

problem in order to go from a partially undefined system to a 

perfectly defined one that can be simulated in an EMT 

software program. Thus, the following strategies are the most 

common in engineering studies: 

 Neglecting the inaccuracies, the unknowns and the 

implicit data; using “typical” characteristics for 

unknown parameter values. 

 Studying the system for a limited number of 

structure configurations and/or parameter sets 

thought to be most critical, i. e. the worst-case 

scenarios. 

However, the results obtained with these strategies have 

significant flaws: 

 They neglect implicit input data. 

 They do not account for all the potential values of 

the system structure and/or characteristics, and 

thus they do not allow for a cost-effective 

decision. 

 Their reliability highly depends on the engineer’s 

assumptions regarding the critical configurations 

and parameter sets, i. e. the engineer’s expertise in 

the field. 

Indeed, traditionally, uncertainty and variability in EMT 

studies have been either neglected or dealt with by considering 

only worst-case scenarios. Neglecting uncertainty and 

variability is surely not a good practice but very often neither 

is considering only worst-case scenarios. On the one hand, it 

may be difficult or impossible to know in advance the 

parameter values and/or the system configurations leading to 

the worst-case scenarios. In fact, the determination of the 

worst-case scenarios may be easy when the system response 

against the parameters and/or the configurations is monotonic 

(either always increasing or always decreasing), but it is 

difficult when this is not the case. The latter is the most 

common situation in EMT studies due to resonances, 

parameter interactions and non-linear behaviors. Of course, 

failing to properly identify the real worst-case scenarios and 

drawing conclusions on what are not the worst-case scenarios 

can lead to system damage.   

On the other hand, even if the parameter values and/or 

system configurations leading to the worst-case scenarios are 

correctly identified, the mitigation measures undertaken may 

not be cost-effective, as they may require expensive 

investments for highly improbable events that could be 

handled otherwise. For example, 80% or 0.001% fault 

probabilities don’t have the same practical implications and 

thus shouldn’t lead to the same mitigation measure 

investments [12]. 

This paper aims to present a practical approach to these 

problems which avoids the flaws of traditional methods. Due 

to lack of space, parameter identification will not be described 

here, but an example of how the problem can be treated with 

our approach can be seen in [2]. Another approach to 

parametric batch simulation can be found in [14]. 

IV.  GENERAL FEATURES OF A SOFTWARE PROGRAM  

FOR PARAMETRIC EMT STUDIES 

At least three facts explain why uncertainty, variability and 

implicitness have been usually neglected or dealt with through 

worst-case assumptions: 

 the limited capabilities of usual computers; 

 the lack of skills in probability and statistics of 

power system engineers; 

 the lack of software tools for these problems.  

Firstly, as we will see, taking into account uncertainty and 

variability in EMT studies requires performing a large number 

of simulations (hundreds, thousands), something that was 

impossible with the speed of past computers. This, however, is 

no longer the case, as modern computers perform an EMT 

simulation in seconds or, in the worst cases, minutes. 

Moreover, nowadays computers have several cores, thus 

allowing for simulation parallelization and thus reducing the 

simulation time by a factor close to 1/N, where N is the 

number of cores of the computer.  

Secondly, performing studies that account for the 

uncertainty and variability of the system implies using 

techniques in the field of probability and statistics that are 

usually not or poorly known by power system engineers. A 

similar remark can be made for parameter identification. 

Thirdly, the usual EMT software programs are not able to 

deal with variants, uncertainties and implicit data. Indeed, 

some of them allow for batch simulation thanks to native 

scripting capabilities or by their ability to be run by an 

external code (see section III). However, this leaves all the 

hard work to the engineer, who needs to become familiar with 

the required statistical techniques and then code them in the 

suitable programming/scripting language. Moreover, even 

when the engineer has the skills in both statistics and 

programming, developing a specific program for the problem 

at stake is very time-consuming and subject to unnoticed 

programming errors.  

These considerations lead to the conclusion that a practical 

solution for parametric studies is a software program that must 

1. not require any user programming/scripting;  

2. not require advanced statistical skills (only basic 

concepts such as mean and standard deviation); 

3. parallelize the simulations (as well as the pre-

processing of the input data and the post-processing 

of the simulation results). 

Moreover, whereas the traditional EMT outputs are voltage 

and current waveforms, accounting for system variability and 



parameter uncertainties means that the study results will be in 

the form of samples, i. e. statistical distributions. The software 

program must therefore 

4. provide visualization and analysis tools for both 

types of results: statistical distributions of the whole 

simulated population and voltage and current 

waveforms of individual cases.  

A final important aspect must be taken into account. Quite 

often, when performing a study, the engineer performs some 

kind of pre-processing of the input data and also some post- 

processing of the simulation results generated by the EMT 

software program. Sometimes these pre- or post-processing 

calculations are quite generic, for example the RMS value or 

the envelope of a voltage waveform; on other occasions, the 

user performs specific calculations related to his very 

particular study case. In parametric studies, the software 

program will be in charge of this for every single simulation; 

therefore, the software program must  

5. include usual pre-processing and post-processing 

routines as built-in functions; 

6. allow user-defined pre-processing and post-

processing. 

V.  PARAMETER UNCERTAINTY 

Performing an EMT study requires building a model for the 

system under study and to calculate the parameter values of 

the elements of this model. However, quite often these values 

are not exactly defined; instead, the parameters can take a 

range of values or follow probability distributions. This is 

called parameter uncertainty.  

Of course, even if many parameters are affected by 

uncertainties, only those whose variation may have an 

important influence on the output need to be considered. It is 

of paramount importance not to miss any of these. Discarding 

in advance uninfluential parameters is tricky and one may 

discover that a parameter thought to be uninfluential was in 

fact very important. In case of doubt, the best practice is not to 

discard any uncertain parameter and to perform a sensitivity 

analysis that will evaluate the parameters’ importance and 

rank their relative impact (see section VII). 

Two types of parameter uncertainty can be distinguished 

[17]: The first, epistemic uncertainty is due to limited 

knowledge of the characteristics of the equipment, which can 

be due to a number of reasons: the input data is provided by 

the manufacturer as a nominal value with a given 

tolerance/accuracy, or it has been measured on other 

equipment with similar design, or it has been calculated with 

approximate analytical methods, or it may have changed since 

it was measured, etc. Epistemic uncertainty can be reduced if 

the knowledge of the system is improved, for instance by 

performing specific measurements. For example, in 

transformer energization studies, the transformer air-core 

inductance is a very important parameter usually known with 

20-30% accuracy (due to the assumptions of the analytical 

formulae); in lightning studies, the tower footing resistance 

value may have a high impact on the results, but this value is 

never known precisely. In other cases, the engineer has no 

data at all for some of the system component characteristics. 

In these cases, “typical” values may be used, but then a high 

uncertainty must be accounted for (say 30-300% depending on 

the case).  

The second type, aleatory uncertainty is due to the intrinsic 

randomness of the physical phenomenon at stake. For 

example, in fault studies, the voltage angle at the fault 

inception is an important parameter that can take any value 

(=0-360°). In switching studies (capacitor, lines, cables…), 

the circuit-breaker (CB) closing angle over the power-

frequency period and the pole closing span (tA≠tB≠tC) are very 

important factors, but their values change randomly at each 

CB operation. In transformer energization studies, the CB 

closing times are key factors, and so is the transformer 

residual flux, which changes at each energization as well 

[15][16]. In lightning studies, the strike current amplitude and 

waveform parameters vary randomly as well [18][19].  

As we have previously seen, when the model parameters 

are affected by some uncertainty, a traditional strategy is to 

study the worst-case scenarios. However, we have seen that 

this strategy may lead to equipment damage or decisions that 

are not cost-effective. The rigorous way to deal with 

parameter uncertainty is to perform a probabilistic study, i. e. 

to adopt a risk-based approach. The output of such a study are 

the statistical distributions of the variables of interest and, if a 

particular event is at stake, the probability (or risk) of 

occurrence of this event, for example a fault, equipment 

damage or system collapse.  

For this, we must first model the parameter uncertainties 

with suitable probability distributions, and then apply an 

uncertainty propagation algorithm to the EMT model to 

compute the output probability distributions [17]. 

A.  Parameter uncertainty modelling 

The uncertainty of each uncertain parameter must be 

quantified and modeled by a probability distribution. For 

many parameters, a continuous uniform distribution will be 

considered as there is no reason to favor one or another value 

in the uncertainty range, i. e., all the possible values are 

equally probable (a triangular distribution could also be used if 

the central value is considered the most probable). This 

distribution is defined by its minimum and maximum values 

[a,b]. In the previous examples, this distribution could model 

the tower footing resistance, the fault inception angle, the CB 

closing angle, the transformer residual flux and air-core 

inductance. Other uncertain parameters follow special 

probability distributions linked to the physical phenomenon 

they model; for these, the field literature provides the 

characteristic values of the probability distributions: for 

example, CB pole closing span follows a Gaussian distribution 

[15][16], whereas lightning strike current amplitude and 

waveform parameters follow log-normal distributions 

[18][19].  

B.  Uncertainty propagation 

Uncertainty propagation techniques provide a way to 

compute the output signals probability distributions given the 

probability distributions of the parameters. The best known 



and robust technique is the Monte Carlo method [20][21], 

which is the one implemented in our software tool. Other 

techniques exist that may allow for a higher convergence 

speed, but they are limited to a small number of parameters 

and they often provide less statistical error control. Some of 

them have been compared for transformer energization studies 

in [16]. Whichever the propagation technique, the output 

signals probability distributions are computed by sampling the 

uncertainty space defined by the uncertain parameters, 

performing the EMT simulations for these parameter sets, and 

computing the corresponding outputs signals (that may require 

the post-processing of the simulation results we have talked 

about before).  

The output of the propagation process are the cumulative 

distribution functions (CDF) of the output signals. For 

example, if the output signal is a voltage at the terminals of a 

transformer, the algorithm will provide the probability of 

exceeding any voltage value. An example is shown in Fig. 3a 

for the voltage drop at a transformer energization. 

However, the output signals probability distributions are 

only estimates, whose reliability increases with the number of 

simulations performed. As a consequence, an indication must 

be provided to the user about the reliability of the results so 

they can decide on the number of simulations to be performed. 

In our software implementation, this is done by providing 

convergence graphs and confidence intervals, which are 

powerful and reliable indicators [21]. An example is shown in 

Fig. 2 for the probability of exceeding 5% RMS voltage drop 

at a transformer energization; this figure shows that after 8000 

simulations, the probability is estimated at about 12% with a 

1% confidence interval width.  

VI.  SYSTEM VARIABILITY 

System variability refers to the fact that the system under 

scrutiny does not have a unique structure, and neither does the 

system model. The multiplicity of model structures that need 

to be considered may be due to contingencies like line or 

generator outages, which imply keeping/removing the 

corresponding elements in the model; but also to lighting 

strikes or ground faults, which imply connecting the lightning 

current source or the fault model to different points of the 

system model. But contingencies are not the only situation 

where one needs to consider several model structures: very 

often, the system under study can operate in several 

configurations, for example a substation, and the study (for 

example, a TRV study) needs to consider all of them. Finally, 

a very particular case of structure multiplicity is that of model 

comparison: in this case, the user wants to compare several 

component models (for example the CIGRE, Heidler, and 

biramp lightning current models).  

In practice, system variability is modelled in several ways: 

different network configurations are due to the state of the 

switches that model the circuit-breakers, which can be open or 

closed; outages are also modelled by switches that connect or 

disconnect the lines or generators; ground faults are modelled 

by a switch that connects a node of the model to the ground, 

the potential fault nodes being defined by a list; the same 

applies to lightning strike locations, which are modelled by a 

current source connected to one of the nodes of a list defining 

the potential impact points; finally, alternate models are 

introduced by connecting one of them to the appropriate node.  

In all these cases, the variability is modelled by an element 

that takes a value out of a list of potential values: {open, 

closed} for switches, {node1, node2, … nodeN} for faults and 

lightning strikes, {model1, model 2, … model N} for alternate 

models. Each of these sets of potential values can be treated as 

a parameter defined by a discrete uniform distribution. Then, 

if each parameter has nk potential values, the total number of 

possible model structures is nk=n1
.n2

.n3
.... 

System variations can therefore be studied exhaustively, in 

other words, it is possible to simulate all the potential system 

variations if the total number of required simulations, nk, is 

computationally affordable. 

However, sometimes this is not the case and nk is too 

high. In this case, an uncertainty propagation technique must 

be used to estimate the output of interest, for example the 

system reliability.  

VII.  SENSITIVITY ANALYSIS 

In a sensitivity analysis study, the goal is to determine the 

relative influence of the uncertain parameters on the output 

signals or on the probability of the event at stake (on the risk). 

Sensitivity analysis allows for better understanding of the 

behaviour of the system under study; but most importantly, if 

this behaviour is unsuitable (faults, equipment damage…), 

sensitivity analysis gives indications for action, as it shows 

where (if possible) we should intervene to change this 

behaviour. This action might be modifying the system 

configuration or changing the equipment, but it may also be to 

perform field measurements in order to reduce epistemic 

uncertainties and thus better estimate the probability of the 

event at stake [12].  

Action should target the system elements associated with 

the parameters that influence the most the output, and avoid 

wasting time with those associated with the parameters that 

have little influence. Several sensitivity analysis techniques 

exist to identify these target parameters [22][23][16]. Some 

techniques provide numerical indices that estimate the 

influence of each parameter (and sometimes its interactions); 

other techniques show the impact of the parameters and their 

interactions in a graphical way. Our software implementation 

includes the Morris and Sobol sensitivity indices (numerical), 

and the scatter and cobweb plots (graphical). An example is 

given in section VIII.   

VIII.  EXAMPLE CASE 

In this section we will present an example of parametric 

study performed with our software implementation of the 

previous techniques. Due to lack of space, only parameter 

uncertainty and sensitivity analysis will be considered. 

The system under study is represented in Fig. 1. It consists 

in the energization of the 250 MVA YNd11 150/33 kV 

transformer of an offshore wind farm connected to the 150 kV 



grid though a 35 km long submarine AC cable. The events 

under scrutiny are the RMS voltage drop at the point of 

common coupling and the resonant temporary overvoltages 

(TOV) at the transformer terminals. As an illustration, we will 

assume that the grid operator is concerned by a voltage drop 

higher than 5% (grid power quality), and that the wind farm 

operator is concerned by temporary overvoltages higher than 

1.3 per unit (transformer insulation damage). The goal of the 

study is to determine the maximum potential values of the 

RMS voltage drop and the TOV, as well as the probability of 

exceeding the preceding threshold limits (5% and 1.3 pu). 

 
Fig. 1: Study System 

The supply grid is modelled by a Thevenin equivalent 

circuit. As only the per unit length cable sequence parameters 

are available, the Bergeron model is used. The transformer is 

modelled with idTRAN [6]. 

A number of parameter uncertainties will be considered. 

According to the grid operator, the short-circuit power of the 

supply grid may vary between 4 and 8 GVA. The cable 

parameters have been obtained by computer simulation; we 

will consider an accuracy of 5% for the positive sequence 

parameters and 30% for the negative sequence parameters; the 

higher value for the latter is due to the fact that they are much 

more difficult to estimate by simulation. The circuit-breaker 

poles may close any time over the 50 Hz power-frequency 

period and there is a small pole span among the three closing 

times; this pole span will be modelled by a Gaussian 

dispersion as suggested in [15]. As for the transformer, its air-

core inductance value has been obtained by simplified 

formulae and thus we will consider a 30% accuracy. 

Moreover, as the transformer capacitances to ground are not 

known, we will consider they are in the range of 1 and 3 nF 

[24]. Finally, the transformer residual fluxes may vary 

between zero and 80% of the rated flux, with the phase pattern 

suggested in [15] depending on the de-energization angle. 

Altogether, there are 14 uncertain parameters. According to 

section V.A, these parameter uncertainties are modelled in 

PAMSUITE as shown in Table 1. 

In order to compare the deterministic worst-case scenario 

strategy to the probabilistic strategy, we have considered six 

potential a priori worst-cases that an experienced engineer 

could think of [15]: the lowest air-core inductance; the 

maximum residual flux; the CB closing simultaneously at zero 

(cases “A”) or maximum voltage (cases “B”) of phase A with 

the same sign as the residual flux; the R and L of the cable at 

their mean (cases “1”), max (cases “2”) or min (“cases “3”) 

value. 

Table 2 shows the results obtained for the potential a priori 

worst cases and the results provided by PAMSUITE for a 

Monte Carlo run of 8000 simulations. 

Compared to the results provided by PAMSUITE, all the 

potential worst-case scenarios underestimate the three outputs 

of interest: the maximum inrush current, the RMS voltage 

drop, and the TOV. 

Table 1: Parameter uncertainty models for the example case  

(“U” stands for uniform distribution, “N” for Gaussian distribution) 

Supply network Circuit breaker 

Ssh ~ U[4,8] GVA tA ~ U[100,120] ms 

 tB ~ N(0,5) ms 

Cable tC ~ N(0,5) ms 

cable R1 ~ U[-5,5]%  

cable R0 ~ U[-30,30]% Transformer 

cable L1 ~ U[-5,5]% Lair-core ~ U[-30,30]% 

cable L0 ~ U[-30,30]% C ~ U[1,3] nF 

cable C1 ~ U[-5,5]% 0 = r 
. U[0,80] % 

cable C0 ~ U[-30,30]% d = U[0,2] 

With the following dependent parameter definitions: 

tB=tA+tB ; tC=tA+tC ; k=0
.cos(d+(k-1).2/3), k={A,B,C} 

RLCcable=RLCcable,rated+RLCcable, RLCcable={R1,R0,L1,L0,C1,C0} 

    
Table 2: Worst case results 

 Potential “a priori” 

worst cases 

PAM-

SUITE 

worst 

case 

CB close at zero V CB close at max V 

A1 A2 A3 B1 B2 B3 

Current 

max (kA) 
5.6 5.5 5.6 4.1 3.9 4.0 6.2 

RMS drop 

max (%) 
9.9 9.4 10.4 8.4 8.1 8.7 11.5 

TOV  

max (pu) 
1.41 1.34 1.43 1.32 1.32 1.42 1.49 

 

However, for the supply grid and the offshore plant 

operators, the most important figure is not the maximum 

voltage drop or TOV, but the probability of exceeding the 

threshold limits. These figures are provided by the software 

implementation: the probability of exceeding a 5% RMS 

voltage drop is about 11.5%; the probability of exceeding 

1.3 pu TOV is about 1.9%. As an illustration, for the RMS 

voltage drop, Fig. 3a shows the cumulative distribution 

function and Fig. 2 the convergence graph for the probability 

of exceeding 5%, the confidence interval of the estimated 

probability becoming narrower as the simulation process goes 

on.  

As for the sensitivity analysis, Fig. 3b shows the computed 

Sobol sensitivity indices for the probability of exceeding the 

TOV limit. Among the epistemic parameters, this figure 

shows that several of the cable parameters and the transformer 

capacitance do not have any significant impact, therefore time 

should not be wasted trying to gather better knowledge of 

them. On the contrary, the transformer air-core inductance, the 

short-circuit power of the network and the capacitive cable 

parameters are very influential; therefore, their accuracy could 

be improved to get more accurate results (the other influential 

parameters are aleatory, thus nothing can be done). 

Note that this probabilistic study has been done with little 

extra time: setting up the case in PAMSUITE took 20 minutes 

and the results figures shown here are directly copy-pasted 

from the software interface. The simulation process to run the 

8000 simulations (automatic, no intervention of the user) took 

1.5 hours using 10 cores in parallel in a computer with an Intel 

Xeon E5-2630 12-core 2.60 GHz processor (400 ms simulated 

time with 20 ms time step). 

 



 
Fig. 2: RMS voltage drop probability of exceeding 5%, depending on the 

number of simulations, with a confidence interval 

 

    
Fig. 3: (a) RMS voltage drop CDF;  

(b) Sobol sensitivity indices for exceeding the TOV limit 

 

 
Fig. 4: PAMSUITE Simulation & Analysis user interface 

 

IX.  CONCLUSIONS 

The advantages of using parametric simulation in EMT 

studies, in particular of probabilistic simulation, have been 

shown. This approach allows to take into account the relative 

quality of the input data and to consider all the potential 

configurations of the system under study. The traditional 

approach consisting in the simulation of several scenarios 

thought to be the worst cases and discarding uncertainties and 

implicit data should be avoided, as nowadays computers allow 

for the use of advanced simulation techniques that provide 

rigorous, reliable and much richer results. In addition, they are 

less dependent on the experience and expertise of the engineer 

in charge of the study. For this, new software tools need to be 

developed that provide the means to apply the parametric 

approach easily and quickly; “going parametric” shouldn’t 

take more than 30 minutes additional time. 
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