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Abstract—This paper evaluates, mathematically and
experimentally, a transmission line differential protection
function based on incremental currents, which are not
influenced by pre-fault conditions, such as charging and loading
levels. In the mathematical analysis, the trajectories for each
phase, for all types of faults, are demonstrated by analytic
deduction of incremental current ratios. For the experimental
assessment, the Alternative Transients Program (ATP) was
employed to submit a 500 kV 200 km long transmission line
into a wide variety of faults. In addition, a 500 kV transmission
line of the Brazilian interconnected system was also modeled
via ATP, so that different faults scenarios could be applied to it.
Also, for this last set of cases, the algorithm was embedded into
a real commercially available relay to assess its performance.
In order to carry out a broad evaluation of the incremental
algorithm performance, sensitivity analyses were made. The
results reveal that the incremental function operates for a bigger
variety of faults including ones that the conventional function
does not operate.

Keywords—Incremental Differential Protection, Transmission
Line, Alpha Plane, Experimental Evaluation, Differential Relay.

I. INTRODUCTION

IN order to uphold the electrical power system and all
its functions, transmission lines must meet their purpose

of interconnecting distant regions by transmitting electrical
energy from generation centers to different loads. Due to
their large extent and adverse climatic operating conditions,
lines are highly exposed to faults, so that it is essential to
have safe and modern protection schemes, capable of rapidly
eliminating and isolating faults. As the use of numerical relays,
combined with modern optical communication systems, has
driven the application of differential protection (87L) function
for long transmission lines [1], many authors have investigated
alternatives to improve its performance, regarding operation
problems [2]–[5].

Differential protection performance can be compromised
when the system operates at a high loading level [3].
According to [4]–[7], the system loading can impair the
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analysis of the differential loop. Therefore, the systems
operating condition can be a limiting factor for the 87L
performance.

With that regard, [6] propose the adjustment of pickup
current to values greater than the loading current, so that it
does not jeopardize the currents calculated by the differential
logic. However, in systems with a significant loading level,
the adjustment of the pickup current can result in high values,
which is damaging for the protection system sensitivity.

Systems with a high loading level can also compromise the
protection performance during high-resistance internal faults,
because it can result in outfeed conditions [7]. In this situation,
the load current magnitude is greater than the fault current
level, such that the differential protection identifies currents
lagged by 180◦ at the terminals, despite being an internal
fault. Thus, the traditional percentage differential element
will not operate for this internal fault situation. To avoid a
misoperation, the authors propose decreasing the slope setting
so that the protection scheme becomes more sensitive and
able to identify internal faults with outfeed. However, reducing
the slope is a risky solution, as it can restrict the protection
reliability.

Besides the loading condition, differential protection is also
influenced by the capacitive effect, which is associated with
intrinsic line characteristics and, therefore, is present during
its operation, even before a fault occurs. During steady-state,
the line charging current value can be predominant over the
loading current, influencing the current transformers (CTs)
measurements at the protected line terminals. This situation
can generate a false differential current that can lead to a
misoperation [8].

Overall, the solutions presented to eliminate the influence
of pre-fault conditions, i.e., the decrease in the slope and
increase in pickup current, are not feasible as it may cause
the differential protection misoperation [9], [10]. Furthermore,
logics that depend on voltage measurement were also
described to reduce the effects of charging current. However,
voltage dependency is not interesting, as the use of capacitive
voltage transformers (CVTs) becomes necessary, whereas only
CTs would be necessary in the original differential logic.

In [11] and [12], the idea of using incremental differential
elements is introduced, once it is demonstrated that pre-fault
current removal provides phase elements the same sensitivity
of the zero and negative elements. The authors argue that
the differential logic must be based on incremental currents,
which are defined solely by the fault characteristics and,
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therefore, are not influenced by the operating condition of
the system. Thus, the currents measured by the CTs must be
compensated by calculating the incremental currents in order
to ensure the correct differential protection operation. Based
on the incremental quantities idea, [13] proposed a differential
protection based on incremental complex power alpha plane.
Despite elucidating the benefits associated with the use of
incremental quantities and presenting satisfactory results, the
proposed algorithm is based on incremental complex power
and, therefore, voltage measurement is also necessary.

Furthermore, [11] and [12] investigate the possible
trajectories of phase elements on the alpha plane against
the influence of the following parameters: CT saturation for
external faults, fault resistance value and system loading
condition. In [11], current ratios equations for phase elements,
considering a single-phase short circuit in phase A for a short
line, are deduced. Despite performing several types of analyses
on the behavior of the differential trajectories, the author
deduced only the equations of the differential elements for
single-phase to ground short-circuits.

This paper extends the study presented in [11] by analyzing
the phase current ratios trajectories behavior for conventional
and incremental differential protection, considering all four
types of faults. This way, it is possible to infer exactly how
different operation conditions interfere on conventional and
incremental elements. In order to evaluate the incremental
differential algorithm, computational analyses were carried
out over a 500 kV/60 Hz and 200 km transmission line
test system, modeled on Alternative Transients Program
(ATP), considering a wide variety of faults. In this first
set of simulations, fault scenarios obtained by varying
fault resistance, fault location, source-to-line impedance
ratio and system loading were considered. Later, a real
Brazilian transmission line, 500 kV/60 Hz and 335 km long,
was modeled with the ATP software. In the real system,
fault scenarios, obtained by varying fault resistance and
location, were considered as input signals for a commercially
available relay, through which the incremental algorithm was
implemented and tested. All the obtained results highlight the
efficient performance of the incremental differential elements
in relation to all cases of fault and system characteristics
variation assessed.

II. LINE DIFFERENTIAL PROTECTION

Kirchhoff’s first law establishes that the algebraic sum
of currents entering and leaving a determined region must
equal zero. Based on this principle, line differential protection
performs the comparison between phase currents measured in
both line ends, referred as local, Îφ,L(k), and remote currents,
Îφ,R(k), where φ can represent the phases A, B and C. Also,
k represents the k-th sample.

The comparison between local and remote currents
started to be implemented based on the operational plane.
Alternatively to the operational plane, the alpha plane was
proposed in order to better represent the relationship between
the phasor quantities involved in the differential function [14].
The alpha plane is a complex plane of the ratio between remote
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Fig. 1: Differential Element Trajectory on Alpha Plane [2].

and local currents, and it is traditionally implemented with a
circular restraint region. The use of the alpha plane has drawn
the attention of manufacturers as it has greater flexibility and,
if well adjusted, can protect transmission lines against a wide
variety of fault conditions.

Another advantage of the alpha plane is the possibility
of determining specific locations of the current ratios for
different operating conditions of the system, which does not
occur in the operational plane. In this sense, specific regions
on the alpha plane can be pre-determined for representing
internal and external faults, normal load conditions and also
for internal faults with outfeed happening in any terminal. So,
an analysis on the settlement regions of the current ratios and
their trajectories on the alpha plane, considering the variation
of the system parameters, collaborates in the definition of a
sensitive, safe and reliable restraint characteristic.

In this context, the modified restraint characteristic, also
called modified rainbow characteristic, was proposed [2]. As
the modified characteristic is defined by the angle and the
radius parameters, it gives greater control over its shape and,
consequently, greater reliability.

Traditionally, the alpha plane is based on the ratio of current
phasors measured at line terminals. The behavior of these
ratios, called Γ, is presented in Fig. 1, where the restraint
region is defined as the internal area of the modified rainbow
characteristic, whereas the external area corresponds to the
operation region. Thus, for any internal fault, Γ moves from
the stability point, at (−1; 0), to the operation region, allowing
fault detection. For external faults, Γ may leave the (−1; 0)
locus, but it must continue inside the restraint region.

The conventional differential protection, called 87L, is based
on the combination of three phase elements: 87LA, 87LB and
87LC. The ratio of these elements is defined by (1) and it
is further referred as conventional differential element (CDE).
For the sake of simplicity, only the local CDE is shown, since
the one attributed to the remote terminal has similar equation.

Γφ,L(k) =
Îφ,R(k)

Îφ,L(k)
(1)

From the alpha plane analysis in the face of internal and
external faults, it is possible to inspect the sensitivity of its



CDEs by investigating their trajectories on the alpha plane for
different operating conditions of the system.

III. LINE INCREMENTAL DIFFERENTIAL PROTECTION

Incremental differential protection, called ∆87L is based on
the combination of three phase elements: ∆87LA, ∆87LB and
∆87LC. The ratio is portrayed in (2) and it is further referred
as incremental differential element (IDE). As it can be seen,
the incremental element is basically the subtraction of Îφpre

,
the pre-fault current, from the total fault current, Îφ(k), at the
instant k. Consequently, the IDEs do not carry the pre-fault
information and so, they are inherently incremental. For the
sake of simplicity, only the local IDE is shown, since the one
attributed to the remote terminal has similar equation.

Γ∆φ,L(k) =
Îφ,R(k) − Îφ,Rpre

Îφ,L(k) − Îφ,Lpre

(2)

A. Current Contributions Equations

As described in (1) and (2), the ratio computation, both in
function 87L and ∆87L, depends on the current contributions
coming from each terminal of the transmission line. As
the CDEs and IDEs behavior defines their trajectory in the
alpha plane, the current contributions of the local and remote
terminals, Îφ,L(k) and Îφ,R(k) respectively, are evaluated.
Moreover, according to [11], factors such as line loading,
source-to-line impedance ratio and fault resistance employ
deviations on the CDEs trajectories. In this context, it is
evaluated how these factors influence the current contributions
from both line ends and therefore in the trajectories of both
differential elements.

Fig. 2 depicts a short transmission line with impedance, ZL,
and local and remote Thévenin impedance equivalents ZSL

and ZSR
. After fault occurrence, the currents entering the line

from both sources consist of two parts: load current and pure
fault contribution. As states the superposition theorem, these
components can be calculated separately solving the system
from Fig. 3 before and during the fault. It is emphasized that
only the positive sequence circuit is presented and, except for
the sources, the remaining circuits are identical to it.

Fig. 2: Short Transmission Line System

Fig. 3: Positive-Sequence Circuit

For pre-fault steady state, load current ÎLD can be calculated
using (3), with V̂L and V̂R being the pre-fault local and remote
source voltages, and the subscript j = 1. To determine the fault
currents, the Thévenin equivalents of the sequence networks
are needed and these are obtained according to (4) and (5).
The parameter d in Fig. 3 represents the percentage of the line
at which faults are applied, starting from the local terminal.

ÎLD =
V̂L − V̂R

ZjM + ZjN
(3)

where:

ZjM = ZSL
+ d · ZL (4)

ZjN = ZSR
+ (1 − d) · ZL (5)

For fault condition solutions, it is necessary to determine
the pre-fault voltage at fault point, V̂F , and the fault equivalent
impedance Zj . The former can be obtained through (6), and
the latter considering (7), where j can be 0, 1 and 2, for zero,
positive and negative sequences, respectively.

V̂F = V̂L − Z1M · ÎLD (6)

Zj =
ZjM · ZjN
ZjM + ZjN

(7)

Based on the type of fault, the sequence networks are
connected to obtain the fault currents ÎFj at the fault location.
The current distribution factors, displayed in (8), are used to
calculate the sources contributions to the fault. Also, ÎLD is
added to positive sequence current, so that local and remote
sequence total fault currents, shown in (9) and (10), can be
obtained. Finally the sequence fault currents are transformed
into phase quantities through the Fortescue matrix, dependent
on operator a which is equal to 1]120◦, resulting in the total
currents seen by local and remote relays, ÎL,φ and ÎR,φ.

The phase fault currents contributions for each terminal
and fault type are presented in Table I, where “D” is
established as (11), which considers the fault resistance
influence by means of the phase-to-phase fault resistance (RP )
and phase-to-ground fault resistance (RG).

Cj =
ZjN

ZjM + ZjN
(8)

ÎL,j = Cj · ÎFj (9)

ÎR,j = (1 − Cj) · ÎFj (10)

D =
(Z0 +RP + 3RG)

Z0 + Z2 + 3RG + 2RP
(11)

B. Alpha Plane Ratios - Elements Trajectories

In order to evaluate the trajectories on the alpha plane,
the ratios of local and remote currents must be calculated.
This step is done for every phase element of 87L and
∆87L functions, resulting in six differential elements. Table II



TABLE I: Relay Currents.

AG Fault Local Currents AG Fault Remote Currents

ÎL,A = (C0 + C1 + C2) · ÎF1 + ÎLD ÎR,A = (3 − C0 − C1 − C2) · ÎF1 − ÎLD

ÎL,B = (C0 + a2C1 + aC2) · ÎF1 + a2ÎLD ÎR,B =
[
1 − C0 + a2(1 − C1) + a(1 − C2)

]
· ÎF1 − a2ÎLD

ÎL,C = (C0 + aC1 + a2C2) · ÎF1 + aÎLD ÎR,C =
[
1 − C0 + a(1 − C1) + a2(1 − C2)

]
· ÎF1 − aÎLD

BC Fault Local Currents BC Fault Remote Currents

ÎL,A = (C1 − C2) · ÎF1 + ÎLD ÎR,A = (C2 − C1) · ÎF1 − ÎLD

ÎL,B = (a2C1 − aC2) · ÎF1 + a2ÎLD ÎR,B =
[
a2(1 − C1) − a(1 − C2)

]
· ÎF1 − a2ÎLD

ÎL,C = (aC1 − a2C2) · ÎF1 + aÎLD ÎR,C =
[
a(1 − C1) − a2(1 − C2)

]
· ÎF1 − aÎLD

BCG Fault Local Currents BCG Fault Remote Currents

ÎL,A = [−C0(1 −D) + C1 − C2D] · ÎF1 + ÎLD ÎR,A = [−(1 − C0)(1 −D) + (1 − C1) − (1 − C2)D] · ÎF1 − ÎLD

ÎL,B =
[
−C0(1 −D) + a2C1 − aC2D

]
· ÎF1 + a2ÎLD ÎR,B =

[
−(1 − C0)(1 −D) + a2(1 − C1) − a(1 − C2)D

]
· ÎF1 − a2ÎLD

ÎL,C =
[
−C0(1 −D) + aC1 − a2C2D

]
· ÎF1 + aÎLD ÎR,C =

[
−(1 − C0)(1 −D) + a(1 − C1) − a2(1 − C2)D

]
· ÎF1 − aÎLD

ABC Fault Local Currents ABC Fault Remote Currents

ÎL,A = C1 · ÎF1 + ÎLD ÎR,A = (1 − C1) · ÎF1 − ÎLD

ÎL,B = a2C1 · ÎF1 + a2ILD ÎR,B = a2(1 − C1) · ÎF1 − a2ÎLD

ÎL,C = aC1 · ÎF1 + aÎLD ÎR,C = a(1 − C1) · ÎF1 − aÎLD

contains the equations of the CDEs and IDEs ratios for each
fault type: AG fault, BC fault, BCG fault, and ABC fault.

It can be seen that the coefficients of healthy phases stay
at the stability point (−1; 0) as the ratios showcase a steady
-1 result, independently of the differential function employed.
For the affected phases, it is shown that CDE ratios depend
on current distribution coefficients, load current, fault current
and the term “D”, which in turn subjects to the RP and RG.

For the incremental element, regarding the AG, BC and
ABC faults the IDEs of the faulted phases depend only on
current distribution coefficients. For BCG faults, besides the
Cj , the IDE depends on “D”. In such way, ∆87L elements
mostly do not depend on the value of the fault resistance or
the system load, as it is the case with CDEs.

Note that the only difference between CDE and IDE ratios
is that the second one does not have the ÎLD/ÎF1 term, since
the load current is subtracted, according to (2).

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

All the simulations contemplated the same transmission
line modeling characteristics on ATP. The long transmission
line was implemented as perfectly transposed and considering
Clarke model, with distributed and constant in frequency
parameters [15]. Besides, in order to employ the CDEs
deductions originated from the short line model, highlighted
on Table II, on the long transmission line analysis, a method
to compensate the capacitive current was applied so that the
obtained behavior is similar to a short line [16].

In order to primarily evaluate the incremental differential
algorithm, a simplified 500 kV/60 Hz system with a
200 km single circuit transmission line, connected to Thevénin
equivalents at its ends, similar to Fig 2, was assumed and
modeled via ATP. The algorithm was implemented using a
sampling rate of 16 samples per cycle, and the output signals
obtained from electromagnetic transients are filtered by means
of a third-order low-pass filter, with a cutoff frequency of

180 Hz. The system was submitted to a wide variety of
faults by means of computational sensitivity analyses, and fault
scenarios were obtained by varying fault resistance (RG), fault
location (d), source-to-line impedance ratio (SIR) and system
loading (δ), resulting in a total of 157 events as described
in Table III. It is important to mention that the results are
based on the evaluation of CDEs and IDEs alpha plane ratios,
considering the steady-state fault quantities (i.e. no transient
response is considered).

Later, the real 500 kV/60 Hz and 335 km transmission
line, located between Teresina II and Sobral III substations
in Brazil, was modeled via ATP [17]. A high system loading
condition δ = 25◦ was considered and it is worthy to point
out that this condition was imposed on the system in favor
of a more challenging scenario, considering more diverse
conditions were evaluated on prior results. As depicted on Fig.
4, the monitored transmission line is one of the two circuits
present on a double circuit transmission line. However, it is
important to note that the zero-sequence mutual coupling effect
was not considered, such that each circuit could be treated
as a single circuit transmission line. Besides, as one can see
from Fig. 5, the evaluated transmission line is a part of a ring
system, which increases the complexity of the analyzed system
as a whole. Apart from the line ends, four other terminals, also
displayed on Fig. 5, were modeled and directly connected to
their Thevénin equivalent sources. Also, transfer impedances,
present due to the ring system configuration, were obtained
and considered in order to guarantee an accurate ring system
modeling.

The evaluation of fault scenarios from the real system was
accomplished through sensitivity analyses of fault resistance
and fault location variation, resulting in a total of 575
events. It is noteworthy to point out that the obtained results
are related to the relays trip from CDE (embedded to the
commercial relay) and from IDE (proposed by the authors and
implemented on the commercial relay) during fault conditions.



TABLE II: Conventional and Incremental Differential Elements.

Element AG Fault BC Fault BCG Fault ABC Fault

87LA
3

(C0 + C1 + C2) + ÎLD

ÎF1

− 1 −1 −1
1

C1 + ÎLD

ÎF1

− 1

∆87LA
3

(C0 + C1 + C2)
− 1 −1 −1

1

C1
− 1

87LB −1
1 − a2

C1 − a2C2 + ÎLD

ÎF1

− 1
1 − a(1 −D) − a2D

C1 − aC0(1 −D) − a2C2D + ÎLD

ÎF1

− 1
1

C1 + ÎLD

ÎF1

− 1

∆87LB −1
1 − a2

C1 − a2C2
− 1

1 − a(1 −D) − a2D

C1 − aC0(1 −D) − a2C2D
− 1

1

C1
− 1

87LC −1
1 − a

C1 − aC2 + ÎLD

ÎF1

− 1
1 − a2(1 −D) − aD

C1 − a2C0(1 −D) − aC2D + ÎLD

ÎF1

− 1
1

C1 + ÎLD

ÎF1

− 1

∆87LC −1
1 − a

C1 − aC2
− 1

1 − a2(1 −D) − aD

C1 − a2C0(1 −D) − aC2D
− 1

1

C1
− 1

TABLE III: Simulated Fault Scenarios.

Fault Type d (%) RG (Ω) SIRL SIRR δ

AG 50 R∗
G 0.1 0.1 5◦

ABC 50 0.0 1.0 1.0 δ∗

BCG d∗ 10.0 0.1 0.1 5◦

AG 50 0.0 SIR∗
L 0.1 5◦

Legend:
d∗, R∗

G, SIR∗
L and δ∗ stands for the parameters that are varied

and later thoroughly acknowledged in this paper.

In order to do so, a database of fault scenarios was reproduced
via traditional playback procedures employing a protective
relay test equipment set, which was connected to commercially
available relays. To assess the ∆87L performance, the
protection algorithm was directly integrated on the relay via
its embedded programming interface. This area allows the
user to access digital and analog quantities, used by the
relays native functions, aiming to create additional logics,
extend and customize the protection operation, as well
as the possibility to integrate other algorithms. Also, the
programming interface uses the same processing interval of the
relays native protection elements, and consequently it supports
an equal comparison between 87L and ∆87L.

For both evaluated systems modeled by means of ATP,
current signals were obtained by means of C800 2000-5 CTs,
installed at both line terminals, with modeling characteristics
and parameters described by [18]. Moreover, voltage signals
were measured via CVTs, also connected at both line ends,
and modeled as presented in [19].

A. Computational Analysis

Fig. 6 depicts the alpha plane for CDEs and IDEs
considering an AG fault with fault resistance, RG, varying
from 0 to 1000 Ω with steps of 10 Ω. It can be noted from
Fig. 6a that the CDE fails to detect the fault for RG larger
than 420 Ω. Analyzing the IDEs on Fig. 6b, the advantages are
evident since the phase element involved on the short circuit
never loses its sensitivity when varying the fault resistance.
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Fig. 4: Monitored Transmission Line System
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Fig. 5: Monitored Ring System

This behavior favors the use of single-pole tripping schemes
since the phase selection is inherent to this category of
protection [11]. Also, the healthy phase elements, from both
87L and ∆87L elements, stay correctly put at (−1; 0).

The results of an ABC fault with loading conditions, δ,
varying from -90◦ to +90◦, in 5% increments, are presented
in Fig. 7. It is noteworthy to point out that the CDEs have
their performances restricted by a range of -25◦ to +25◦ for all
phases. Also, the three phase elements have similar behavior,
since their trajectories become overlap. From Fig. 7b, it can
be concluded that the use of IDEs provides a correct operation
for all the load conditions analyzed, making it not influenced
by them.

Fig. 8 depicts the alpha plane elements considering a BCG



(a) 87L Element (b) ∆87L Element

Fig. 6: Variation of RG for an internal AG Fault.

(a) 87L Element (b) ∆87L Element

Fig. 7: Variation of δ for an internal ABC Fault.

(a) 87L Element (b) ∆87L Element

Fig. 8: Variation of fault location for an internal BCG Fault.

(a) 87L Element (b) ∆87L Element

Fig. 9: Variation of SIRL for an internal AG Fault.

fault with fault location, d, varying from 5 to 95% with a
rate of 5%. It can be seen that as the fault approaches the
remote terminal, the greater is the current ratio magnitude
on the alpha plane, for both faulted phases CDEs and IDEs.
Therefore, the closer the fault is to the local terminal, the lower
the value of the differential element magnitude. Furthermore,
based on Fig. 8a, it is verified that the imaginary parts
of the CDEs ratios are affected by the variation of fault
location, which does not happen with IDEs ratios, as seen
in Fig. 8b. It is noteworthy that although only the behavior
for a BCG fault was presented, the proposed differential
protection operated correctly for all simulated fault locations,
considering phase-to-ground, phase-to-phase and three-phase
faults. Furthermore, the proposed logic is also capable of
identifying faulted phases, enabling the implementation of
single-phase reclosing scheme.

The results for an AG fault with local source-to-line
impedance ratio (SIRL) varying from 0.1 to 1.0 with steps of
0.1, and from 1.0 to 10 with steps of 1.0, are exhibited in Fig
9. The CDE of phase A is affected, as shown in Fig. 9a, and
sustain a rotation course that occurs due to the reduction of
the total fault current, as well as the local current contribution.
It is noticeable that this rotation tends to make the trajectory
carried out by the CDE falls into the restraint characteristic.
On the other hand, for the IDE, the rotation observed in Fig.
9a is smoothed, resulting in a trajectory that does not tend to
enter on the restraint area. It can also be seen from Fig. 9b
that the weaker the local source (SIRL ≥ 1) is, the smaller is
its contribution to the fault current and, therefore, the greater
is the magnitude of IDE ratio related to the faulted phase.

Obtained results can still be analyzed based on the equations
presented in Table II. It is verified from the fault resistance
variation case, that the CDE ratio trajectory is influenced by
the RG value, as presented in Fig. 6a. This is explained
through the ΓA,L equation, which depends on ÎF1, in turn
affected by the RG value. In opposition, IDE does not change
and remains stable in the operating zone, and its behavior
is explained through the Γ∆A,L equation, that does not
dependent on term “D”, and so it is not influenced by the fault
resistance. With the analysis of the system loading variation
case, it is demonstrated that the CDEs ratio trajectories change
depending on the δ value, as exposed in Fig. 7a. This is
clarified via the Γφ,L equation and its liability on ÎLD. On
the other hand, IDEs do not change and remain stable in the
operating zone. A consistent behavior taking into account the
Γ∆φ,L equation does not depend on loading conditions.

From the fault location and source-to-line impedance ratio
variation cases, it can be seen from Fig. 8 and 9 that both CDE
and IDE trajectories are influenced by d and SIRL values.
Based on Table II, it is verified that Γφ,L and Γ∆φ,L for faulted
phases depend on Cj , which in turn depends on the values of
Zj,M and Zj,N , that are influenced by the location and the
source-in-line impedance ratio as described in (4) and (5).

B. Experimental Analysis

For the experimental tests on the real transmission line,
AG and BC faults were examined for two sets of sensitivity
analyses. The results display 87L and ∆87L performance,



which are demonstrated through phase A element trip signal,
regarding the AG fault, and by the simultaneously trip signal
emission from both phase B and C elements, for the BC fault
condition. The first sensitivity analysis test contemplated a
fault location variation, considering the range of 1% to 99%
and steps of 1%, during an A-to-ground solid fault and also
for a BC solid fault. For the second sensitivity analysis test,
the fault was applied in the middle of the line and considering
fault resistance value range of 0 Ω to 500 Ω and 0 Ω to 250 Ω,
with steps of 2 Ω, for an A-to-ground fault and for a BC fault,
respectively. The obtained results are evaluated by means of
operating time for both protection functions assessed in these
cases, as one can see from Fig. 10 to Fig. 13.

It is noticeable from Fig. 10, correspondent to the AG
solid fault location variation analysis, that both CDE and IDE
correctly operate for all cases, as foreseen in Fig. 8. The
highlight from this case is that the incremental element, ∆87L,
presents a more stable and evenness trajectory, as noticed by
its distribution profile. While, conventional element trajectory
presents a more scattered distribution profile.

As shown in Fig. 11, related to the fault location variation
analysis for the BC fault, CDE and IDE correctly operate for
all cases, displaying similar behavior to Fig. 10. Also, ∆87L
element presents a stable trajectory, in conformity with its
distribution profile. Contrarily, a more scattered distribution
profile is displayed by conventional elements trajectory.

Fig. 12 reveals that the IDE correctly emits a trip signal for
every fault resistance evaluated considering the A-to-ground
fault. This can be explained by the incremental element
equation exhibited in Table II and how it does not depend
on the term “D”. As for fault resistances over 50 Ω, the CDE
was no longer triggered, since this element is also affected by
the loading conditions. In order to improve its performance,
the relay pickup setting for the phase differential function was
adjusted to its minimal value and the fault resistance sensitivity
analysis was executed again. The obtained results revealed that
the CDE continued to misoperate for values over 50 Ω.

Interpretation of the results presented on Fig. 13, obtained
when fault resistance values are varied considering the BC
fault, reveals its similarity to the performance shown in Fig.
12. The IDE correctly emits a trip signal for every evaluated
case. On the other hand, cases with fault resistances over than
175 Ω did not triggered the CDE, since this element is also
influenced by pre-fault conditions.

In addition to the simulations described, for the real
system it was also evaluated the CDE and IDE performance
during two different bolted external faults with CT saturation:
phase-to-ground and three-phase faults. The CT saturation was
modeled considering 100 Ω as burden resistance. From the
obtained results, neither 87L and ∆87L presented incorrect
operations, so that the relay did not display a trip signal.
Hence, for the external faults with CT saturation simulations
assessed, graphical performance analysis with operation time
are not displayed.

V. CONCLUSIONS

In order to guarantee the correct operation of the differential
protection phase elements, by eliminating the influence of

Fig. 10: AG Fault - Fault Location Variation

Fig. 11: BC Fault - Fault Location Variation

Fig. 12: AG Fault - Fault Resistance Variation

Fig. 13: BC Fault - Fault Resistance Variation

the pre-fault conditions, this paper dealt with the evaluation
of the conventional and incremental methods, through the
analysis of the phase elements trajectories. Thus, the equations
that describe the trajectories on the alpha plane due to faults
on transmission lines were demonstrated and later tested by
means of computational and experimental analyses.

The results revealed that the healthy phases elements present
a constant location on the alpha plane, at point (−1; 0), which
characterizes a stability point. Regarding the faulted phases,



the trajectory of the CDE and IDE were explained based on
the equations displayed in Table II. From these analyses, it
was also observed how the fault resistance and load condition
variation influenced the CDE trajectories. On the other hand,
the IDE remains stable in the operation zone as they are not
influenced by RG and δ. In addition, it was observed that the
fault location and the source-to-line impedance ratio affect
both the CDE and IDE trajectories, considering that these
parameters influence the calculation of Cj . It is noteworthy
to mention that the performance of ∆87L is more consistent
when compared to the 87L by means of their operating times,
under multiple fault conditions.

In the presented paper the equations deductions and
mappings of the conventional and incremental elements
trajectories evaluations are performed considering all four
types of fault. Therefore, the analyses based on all types of
fault stand out as contributions of this work, once only the
trajectories of the conventional and incremental differential
elements for a single-phase short circuit are deduced among
papers available in the literature. These analyses developed
in conjunction with tests on commercial relays are sufficient
to validate the deducted equations, in addition to infer exactly
how different operation conditions interfere on the trajectories.

Besides the favorable performance presented in the
evaluated results, it is important to note that the use of
incremental differential protection does not depend on pickup
and slope settings rearrangements. The ∆87L also does not
require additional logic, linked to voltage measurement, to
compensate the charging current of the protected line. To this
extent, one can conclude that the ∆87L element can be simply
implemented and easily integrated and employed to enhance
the performance of the conventional differential element in
real devices applications, ensuring that the protection logic
will correctly operate despite pre-fault system conditions.
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