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Abstract—In recent years power quality monitoring tools are
becoming a necessity, and many studies focus on detection and
classification of Power Quality Disturbances (PQD)s. However,
presently a core obstacle that prevents the direct comparison of
such classification techniques is the lack of a standard database
that can be used as a benchmark. In this light, we propose
here an open-source software which enables the creation of
synthetic power quality disturbances, and is designed specifically
for comparison of PQD classifiers. The software produces
several types of standard disturbances from the literature,
with varying repetitions and random parameters of the labeled
disturbances, and includes two reference classifiers that are
based on deep-learning techniques. Due to the good performance
of these classifiers, we suggest that they can be used by the
community as benchmarks for the development of new and better
PQD classification algorithms. The developed code is available
online, and is free to use.
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I. INTRODUCTION

POWER quality is a measure of the degree to which
voltage and current waveforms comply with established

specifications [1]. Several power quality measures are
harmonic distortions, variations in peak or RMS voltage,
spikes and sags in voltages and currents, and variations in
frequency [2]. In addition, many other different measures are
mentioned in the recent literature, and used in practice [3].

In the last two decades, Power Quality (PQ) monitoring
tools are becoming a necessity [4]. One reason for the
popularity of such tools is the continuing integration of
nonlinear generators and loads in power grids, most of them
based on power electronics technology, which may inject
high-order voltage and current harmonics into the grid [5],
[6]. In this light, many recent studies focus on detection
and classification of Power Quality Disturbances (PQD)s.
Most of the proposed algorithms merge feature extraction
methods that are based on signal processing techniques with
classification methods which stem from the theory of machine
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learning. One familiar approach is to use the Wavelet transform
with a support-vector machine classifier [7], [8]. Another
well-known technique is to use the S-transform [9], which
can be combined with different classifiers such as those based
on artificial neural network [10], and parallel stacked sparse
auto-encoders [11]. Other signal processing techniques that
are being used are the fast Fourier transform [12] and sparse
signal decomposition methods [13]. Moreover, in the last few
years, with the evolution of Deep Learning (DL) techniques,
better classifiers are now available in multiple fields and
applications [14]. As part of this development, several works
focusing on PQD classification such as [15], [16], [17], [18]
have implemented deep learning techniques, which in certain
cases outperform the traditional classification algorithms. A
comprehensive review of recent techniques may be found in
[19] and [20]. Survey [19] focuses on traditional algorithms
of signal processing, feature extraction, artificial intelligence
and optimization methods, while in [20] the focus is on
classification of PQD in utility grids with high renewable
energy penetration.

Presently a core obstacle that prevents the direct comparison
of PQD classification techniques is the lack of a standard
database that can be used as a benchmark [21]. While few
public databases do exist, they are still in limited use since
they were not specifically tailored for PQD classification. For
instance, [22] is a data-set that shows only sag events, and [23]
is a data-set that presents only transient events. As mentioned
in [21], the available datasets are non-standard, and differ in
their disturbance types, number of samples, data labels, and
access methods.

Considering this challenge, we propose in this work an
open-source software which enables the creation of synthetic
power quality disturbances, and is designed specifically for
comparison of PQD classification algorithms. The software
engine may produce many types of standard disturbances
from the literature, with varying repetitions and random
parameters of the labeled disturbances. The software package
also includes two reference classifiers that are based on
deep-learning techniques: a convolutional neural-network
classifier and a bidirectional long short-term memory classifier.
The code of this software is available online, and is free to use.
Download instructions appear at the end of this manuscript.

The paper continues as follows: Section II explains the
main features of the proposed software package and the two
reference classifiers. Section III provides few representative
examples, and Section IV concludes the paper.
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II. THE OPEN-SOURCE SOFTWARE PACKAGE

The synthetic dataset generator is designed to work with
sixteen types of PQDs, all of them well known in the
literature. Table I details the type of disturbances available,
as well as their characteristic mathematical model and typical
parameters. The parameters are in accordance with the
IEEE-1159 standard [24] and the proposed characteristic
equations are used in various works, such as [5], [10], [18].
The sampling rate for all signals is 3.2 kHz, the nominal
frequency can be set to either 50 or 60 Hz, and the default
duration is ten cycles. The basic code was created using
MATLAB 2016b, and the Graphical User Interface (GUI) was
constructed using the same software.

The software supports two main GUIs. The first GUI is a
signal generator and analyzer that synthesizes the disturbance
signals based on the fundamental models shown in Table I.
One example is shown in Fig. 1, which shows a sag
disturbance signal without noise. The number of cycles is 10,
and the nominal frequency is 50 Hz. Note that the right side
of the GUI presents the disturbances. The second GUI is a
database creator that assembles different PQD vectors into a
single “.mat” file. This function has three main options:

• Generate a specific disturbance signal with a predefined
number of identical duplications, as demonstrated in
Fig. 2.

• Generate a specific disturbance signal with a predefined
number of duplicates that consist of random parameters
and additive white Gaussian noise. This option allows to
create a dataset of chosen disturbances by concatenating
them one to another. An example is shown in Fig. 3. In
this example 100 duplicates of a sag disturbance signal
with random noise and a nominal frequency of 50 Hz
with 10 cycles per signal are presented.

• Generate a comprehensive database from all sixteen
disturbance signals. Each disturbance has a predefined
number of copies with random parameters and additive
white Gaussian noise, thus an infinite number of
combinations can be generated. For example, in Fig. 4
1600 different disturbance signals are generated.

Fig. 1: GUI example: a sag disturbance signal without noise.
In this example α = 0.42.

Fig. 2: GUI example: generation of a disturbance signal with
a single sag.

Fig. 3: GUI example: generation of 100 different sag
disturbance signals with random noise.

Fig. 4: GUI example: generation of 1600 disturbance signals,
100 signals for each disturbance, with random noise.



TABLE I: Mathematical Models of PQDs Which are Used by the Synthetic Generator

# Disturbance Characteristic equation Parameters

1 Normal [1± α(u(t− t1)− u(t− t2))] sin(ωt) α < 0.04, T ≤ (t2 − t1) ≤ 9T

2 Sag [1− α(u(t− t1)− u(t− t2))] sin(ωt) 0.1 ≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T

3 Swell [1 + α(u(t− t1)− u(t− t2))] sin(ωt) 0.1 ≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T

4 Interruption [1− α(u(t− t1)− u(t− t2))] sin(ωt)] 0.9 ≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T

5 Harmonics α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt) 0.05 ≤ α3, α5, α7,≤ 0.15,
∑

(α2
i ) = 1

6 Flicker [1 + αf sin(βωt)] sin(ωt) 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20Hz

7 Oscillatory transient sin(ωt) + α−(t−t1)/τ sin(ωn(t− t1))(u(t2)− u(t1))
0.1< α ≤ 0.8, 0.5T ≤ (t2 − t1) ≤ 3T,

8≤ τ ≤ 40, 300 ≤ 2πωn ≤ 900

8 Impulsive transient [1− α(u(t− t1)− u(t− t2))] sin(ωt)] 0.1 ≤ α ≤ 0.414, T/20 ≤ (t2 − t1) ≤ T/10

9 Notch (periodic)
sin(ωt)−sign(sin(ωt))×∑9

n=0 k[u(t− (t1 − 0.02n))− u(t− (t2 − 0.02n))]

0≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4,

0.01T≤ t2 − t1 ≤ 0.05T

10 Spike
sin(ωt)+sign(sin(ωt))×∑9

n=0 k[u(t− (t1 − 0.02n))− u(t− (t2 − 0.02n))]

0≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4,

0.01T≤ t2 − t1 ≤ 0.05T

11 Sag with harmonics
[1− α(u(t− t1)− u(t− t2))]×

[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T,

0.05≤ α3, α5, α7 ≤ 0.15,
∑

(α2
i ) = 1

12 Swell with harmonics
[1 + α(u(t− t1)− u(t− t2))]×

[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1≤ α < 0.8, T ≤ (t2 − t1) ≤ 9T,

0.05≤ α3, α5, α7 ≤ 0.15,
∑

(α2
i ) = 1

13 Interruption with harmonics
[1− α(u(t− t1)− u(t− t2))]×

[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.9≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T

0.05≤ α3, α5, α7 ≤ 0.15,
∑

(α2
i ) = 1

14 Flicker with harmonics
[1 + αf sin(βωt)]×
[α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)]

0.1≤ αf ≤ 0.2, 5 ≤ β ≤ 20

0.05≤ α3, α5, α7 ≤ 0.15,
∑

(α2
i ) = 1

15 Flicker with sag [1 + αf sin(βωt)][1− α(u(t− t1)− u(t− t2))] sin(ωt)
0.1≤ αf ≤ 0.2, 5 ≤ β ≤ 20

0.1≤ α ≤ 0.9, T ≤ (t2 − t1) ≤ 9T

16 Flicker with swell [1 + αf sin(βωt)][1 + α(u(t− t1)− u(t− t2))] sin(ωt)
0.1≤ αf ≤ 0.2, 5 ≤ β ≤ 20

0.1≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T

As mention above, a central challenge in the development
cycle of PQD classifiers is the lack of comparative
implementations. Therefore, the open-source code also
includes two deep-learning networks for PQD classification,
which can be used as a benchmark. Both networks are based
on [18], which proposes a novel full closed-loop approach
for detection and classification of power quality disturbances,
based on deep neural networks.

The first network included in the package is a Convolutional
Neural Network (CNN), which is typically used for image
analysis [25]. The proposed network uses a 1-D convolution
with a Rectified Linear Unit (ReLU), maxpooling layers, and
batch-normalization layers, which are designed to capture
multi-scale features and to reduce overfitting. The architecture
of the network is shown in Table II. For all convolutional and
maxpooling layers the kernel size is 3, and the stride value
is 1. The implementation of the CNN network is done by
two different platforms using the “Keras” and “TensorFlow”
frameworks in Python and using the Deep-Learning toolbox
in MATLAB. The user can choose to work with any software.

The second network is a recurrent neural network
which, unlike the conventional feed-forward neural network,
processes sequential inputs by an internal state that depends
on all the previous inputs. When the sequential data is long
the training process may be difficult, due to the problem
of exploding and vanishing gradients. In order to overcome
this issue, more sophisticated units such as Long Short-Term
Memory (LSTM) units are typically used [26]. In the proposed
reference classifier the network consists of bidirectional Long

TABLE II: Convolutional Neural Network (CNN) Architecture
(Kernel=3 and Stride=1)

# Layer Parameters Activation

1 Convolution Filter size = 32 Relu

2 Convolution Filter size = 32 Relu

3 MaxPooling

4 Batch normalization

5 Convolution Filter size = 64 Relu

6 Convolution Filter size = 64 Relu

7 MaxPooling

8 Batch normalization

9 Convolution Filter size = 128 Relu

10 Convolution Filter size = 128 Relu

11 Global MaxPooling

12 Batch normalization

13 Fully connected Size = 256 Relu

14 Fully connected Size = 128 Relu

15 Batch normalization

16 Fully connected Size = 16 Softmax

Short-Term Memory (BiLSTM) units which are typically used
for speech recognition [27]. While in work [18] unidirectional
LSTM units are proposed, we chose to use BiLSTM in this
work since it considered more accurate for classification of
sequences [28]. The architecture of the BiLSTM network
is shown in Table III. Each BiLSTM layer contains 32
hidden units, and uses tanh(·) as an activation function. The



implementation of the BiLSTM network is done using the
Deep-Learning toolbox in MATLAB.

TABLE III: BiLSTM Architecture

# Layer Parameters Activation

1 BiLSTM Number of hidden units is 32 tanh

2 BiLSTM Number of hidden units is 32 tanh

3 BiLSTM Number of hidden units is 32 tanh

4 Fully connected Size is 16 Softmax

Both networks are configured based on the setups shown
in Table IV. The size of each mini-batch is set to 64 signals,
which are selected randomly for the back-propagation stage in
the training process. The number of epochs, which indicates
the number of times the network run on the entire training
dataset, is 43 for the CNN, and 63 for the BiLSTM. The
learning rate is initiated at 0.01, and is dynamically reduced
by a factor of 1/2 after each 10 epochs, in case the loss
function does not decrease. The selected loss function is based
on cross-entropy, and the optimizer is “Nadam” for the CNN,
and “Adam” for the BiLSTM [29].

TABLE IV: Training Options

Parameter Value

Max epochs 43 (CNN)
63 (BiLSTM)

Mini batch size 64

Initial learning rate (m0) 0.01

Learning rate m0 × 0.5b
1+epoch

10
c

Loss function Cross-entropy

Optimizer Nadam (CNN)
Adam (BiLSTM)

Furthermore, the BiLSTM network size is only 215 Kbyte
while the CNN network size is 520 Kbyte. Also, in case of
CPU usage the computational time for classification is faster
for the BiLSTM while in case of GPU usage the CNN is faster.
Therefore, by means of resources the BiLSTM network should
be used in case of general hardware with size limitation while
in case of DNN processor the CNN network should be used.

III. REPRESENTATIVE EXAMPLES

To further explain the proposed tool functions and
capabilities, we conducted four simulations that demonstrate
the use of the database generator and classifiers. The first and
second simulations use the CNN classifier, while the third and
forth simulations use the BiLSTM classifier. Two datasets were
created using the synthetic dataset generator from Section II,
one dataset without noise and the second with random additive
white Gaussian noise having an SNR between 20-50 dB. Each
dataset contains 76800 signals, which are 4800 signals for
each disturbance type. The first and third simulations use the
noiseless dataset, and the second and forth simulations use the
noisy dataset. The training set includes 90% of the samples in
the complete dataset, and the testing set includes the remaining
10%. The accuracy is defined as

Accuracy =
Number of correct predictions
Total number of predictions

. (1)

Fig. 5: Representative examples: training progress.

The accuracy and loss function values of each epoch in the
training process is presented in Fig. 5 for all simulations.
It can be seen that the CNN network training process has
better performance and converges faster in comparison to the
BiLSTM network.

The average classification accuracy of the training and
testing sets is presented in Table V and Fig. 6, and the
accuracy of the testing set per disturbance is presented in
Table X. The CNN outperforms the BiLSTM classifier by
means of average accuracy. Also, when the performance for a
specific disturbance is compared the accuracy for most of the
disturbances in the CNN outperforms the BiLSTM classifier.

TABLE V: Simulation Average Accuracy Results

Training Testing

CNN without noise 99.410% 99.280%
CNN with noise 99.900% 99.750%
BiLSTM without noise 96.875% 96.289%
BiLSTM with noise 98.437% 98.138%
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Fig. 6: Representative examples: simulation average accuracy
results.



TABLE VI: Confusion Matrix for the Testing Set on the CNN
Network: Without Noise

T
R

U
E

Flicker 483 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6
Flicker+harmonics 0 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+Sag 0 0 419 0 0 12 1 0 0 0 0 0 0 0 0 0
Flicker+Swell 0 0 0 474 0 0 0 0 0 0 0 0 0 0 0 0
Harmonics 0 0 0 0 457 1 0 0 0 0 0 0 0 0 0 0
Impulsive transient 0 0 0 0 0 468 0 0 0 0 0 0 0 0 0 0
Interruption 0 0 13 0 0 0 484 0 0 0 0 0 0 0 0 1
Interruption+harmonics 0 0 1 0 0 0 0 452 0 0 0 0 0 0 0 0
Normal 0 0 0 0 0 5 0 2 462 0 0 0 0 0 0 0
Notch 0 0 1 1 0 0 0 0 0 463 0 0 0 3 0 0
Oscillatory transient 0 0 0 0 0 0 0 0 0 0 478 0 1 0 0 0
Sag 0 0 0 0 0 1 0 3 0 0 0 485 0 0 0 0
Sag+Harmonics 0 0 0 0 0 0 0 0 0 0 0 0 488 0 0 0
Spike 0 0 0 0 0 0 0 0 0 0 0 0 0 501 0 0
Swell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 512 1
Swell+harmonics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 489

PREDICTED

TABLE VII: Confusion Matrix for the Testing Set on the CNN
Network: With Noise

T
R

U
E

Flicker 486 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
Flicker+harmonics 0 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+Sag 0 0 457 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+Swell 0 0 0 495 0 0 0 0 0 0 0 0 0 0 0 0
Harmonics 0 0 0 0 480 0 0 0 0 0 0 0 8 0 0 0
Impulsive transient 0 0 0 0 0 485 0 0 0 0 0 0 0 0 0 0
Interruption 0 0 0 0 0 0 489 0 0 0 0 0 0 0 0 0
Interruption+harmonics 0 0 4 0 0 0 0 439 0 0 0 0 0 0 0 0
Normal 0 0 2 0 0 0 0 0 471 0 0 0 0 0 0 0
Notch 0 0 1 0 0 0 0 0 0 444 0 0 0 0 0 0
Oscillatory transient 0 0 0 0 0 0 0 0 0 0 502 0 0 0 0 0
Sag 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0
Sag+Harmonics 0 0 0 0 1 0 0 0 0 0 0 0 501 0 0 0
Spike 0 0 0 0 0 0 0 0 0 0 0 0 0 461 0 0
Swell 1 0 0 0 0 0 0 0 0 0 0 0 0 0 475 0
Swell+harmonics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 473

PREDICTED

In addition, to demonstrate the performance of the algorithms
for each disturbance, “confusion” matrices were applied to the
testing sets of the CNN and BiLSTM networks. These matrices
are presented in Tables VI, VII, VIII, and IX. The results show
that the average accuracy of the CNN network is superior to
that of the BiLSTM network. In addition, for both networks the
performance of the dataset with noise is better than the dataset
without noise. One possible explanation for this phenomenon
is that the dataset is rather small, and such small size may
lead to over-fitting which can be reduced by adding noise
[30]. Moreover, from the confusion matrix in Table VIII it
can be seen that the trained network classify several of the
sag disturbances in the testing set as interruption disturbances,
when the dataset without noise is used. Such errors are not
common with the noisy dataset. Due to the good performance
of these classifiers, we suggest that they can be used by the
community as benchmarks for the development of new and
better PQD classification algorithms.

IV. CONCLUSIONS

Power quality monitoring tools are becoming a necessity,
and many recent studies focus on detection and classification
of power quality disturbances. However, presently a core
obstacle that prevents the direct comparison of PQD
classification techniques is the lack of a standard database that

TABLE VIII: Confusion Matrix for the Testing Set on the
BiLSTM Network: Without Noise

T
R

U
E

Flicker 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+harmonics 0 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+sag 3 0 473 0 0 0 1 0 0 0 0 3 0 0 0 0
Flicker+swell 4 0 0 474 0 0 0 0 0 0 0 0 0 0 2 0
Harmonics 0 0 0 0 480 0 0 0 0 0 0 0 0 0 0 0
Impulsive transient 0 0 0 0 0 457 0 0 10 0 1 3 0 9 0 0
Interruption 0 0 1 0 0 0 476 0 2 0 0 1 0 0 0 0
Interruption+harmonics 0 0 0 0 3 0 0 475 0 1 0 0 1 0 0 0
Normal 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0
Notch 0 0 1 0 0 0 0 0 16 460 0 2 0 1 0 0
Oscillatory transient 0 0 0 1 0 5 0 0 1 4 464 0 0 0 5 0
Sag 0 0 7 0 0 5 97 0 1 3 1 366 0 0 0 0
Sag+harmonics 0 0 0 0 2 0 1 54 0 0 0 0 423 0 0 0
Spike 0 0 0 0 0 2 0 0 6 8 1 0 0 463 0 0
Swell 0 0 0 5 0 0 0 0 4 0 0 0 0 2 469 0
Swell+harmonics 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 475

PREDICTED

TABLE IX: Confusion Matrix for the Testing Set on the
BiLSTM Network: With Noise

T
R

U
E

Flicker 480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flicker+harmonics 0 455 0 0 25 0 0 0 0 0 0 0 0 0 0 0
Flicker+sag 5 0 467 1 0 0 1 0 0 0 0 5 1 0 0 0
Flicker+swell 1 0 0 478 0 0 0 0 0 0 0 0 0 0 1 0
Harmonics 0 2 0 0 478 0 0 0 0 0 0 0 0 0 0 0
Impulsive transient 0 0 0 0 0 454 0 0 0 22 3 1 0 0 0 0
Interruption 0 0 0 0 0 0 477 0 1 0 1 1 0 0 0 0
Interruption+harmonics 0 0 0 0 1 0 0 477 0 0 0 0 1 1 0 0
Normal 0 0 0 0 0 0 0 0 479 0 0 0 0 1 0 0
Notch 0 0 0 0 0 18 0 0 0 461 0 0 0 1 0 0
Oscillatory transient 3 0 1 0 0 5 0 0 4 1 465 0 0 0 1 0
Sag 0 0 0 0 0 4 1 0 0 1 0 474 0 0 0 0
Sag+harmonics 0 0 0 0 8 0 0 8 0 0 1 0 462 1 0 0
Spike 0 0 0 0 0 0 0 0 1 0 0 0 0 479 0 0
Swell 0 0 0 2 0 3 0 0 0 0 0 0 0 0 475 0
Swell+harmonics 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 476

PREDICTED

can be used as a benchmark. In this light, we propose here an
open-source software which enables the creation of synthetic
power quality disturbances, and is designed specifically for
comparison of PQD classification algorithms. The software
produces several types of standard disturbances from the
literature, with varying repetitions and random parameters of
the labeled disturbances, and includes two reference classifiers
that are based on deep-learning techniques. Due to the good
performance of these classifiers, we suggest that they can be
used by the community as benchmarks for the development
of new and better PQD classification algorithms.

DOWNLOADING THE CODE

The software is free and publicly available, and
can be downloaded from https://github.com/chachkes247/
Power-Quality-Disturbances. We kindly ask that researchers
who use this software will cite this paper. In case the CNN
reference classifier is used, kindly cite [18] as well.
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