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Abstract—In this paper, a full-wave approach based on
the method of moment (MoM) is proposed to investigate the
harmonic impedance of a tower and its connected ground
electrode in the frequency domain. The accuracy of the results
is validated in comparison with NEC-4. The proposed numerical
method is also employed for the evaluation of a full-sized
HVDC tower harmonic impedance. The main contribution is
the assessment of the harmonic impedance of a real tower with
detailed geometrical information connected to the multi-layer
grounding system. The validity of the transmission line method
is evaluated through comparison with the results computed
using the developed full-wave approach at the high frequency.
In addition, the simulation results assure that a real tower’s
harmonic impedance could be smaller than the value estimated
for very simplified models at the high frequencies. When the
full-wave method is applied and the precise model of the ground
electrode is considered, the harmonic impedance of the tower in
the frequency domain and consequently, the transient impedance
in the time domain are different, while the grounding system is
assumed to be a perfectly conducting plane. These differences
can become very significant, especially close to the resonant
frequencies. The harmonic impedance of power transmission
towers is strongly influenced by the connected grounding system.

Keywords—Harmonic impedance, method of moment,
multilayer grounding system, tower surge impedance.

I. INTRODUCTION

ONE of the leading causes of a power transmission
line (PTL) unscheduled outages are a lightning surges.

Seven out of twelve significant blackouts that occurred in
2019 were reported to be due to a lightning strike to the
PTLs [1]. The transient behavior of the transmission tower,
which is struck by lightning, is vital in determining the
basic impulse level (BIL). Accordingly, the detailed tower and
grounding system modeling (GSM) are indispensable in the
transient analysis. The lightning impulse is often specified by
its wide-band frequency contents from dc to several MHz.
The transient overvoltage quantities depend on some different
parameters like lightning current waveform, GSM, mechanical
specifications, construction, shield wire, and surge impedance
characteristics of a tower or its transient impedance [2].
Significantly, the grounding system (GS) and the tower surge
impedance (TSI) have considerable effects on the lightning

M. Ghomi, H. Zhang, C. Leth Bak, and F. Faria da Silva, and K. Yin
are with the Department of Energy technology, Aalborg University, Aalborg,
Denmark (mhg@et.aau.dk; hazh@et.aau.dk clb@et.aau.dk; ffs@et.aau.dk;
kyi@et.aau.dk).

Paper submitted to the International Conference on Power Systems
Transients (IPST2021) in Belo Horizonte, Brazil June 6-10, 2021.

performance of the PTLs. The available models of the tower in
the Electromagnetic Transient Programs, such as ATP-EMTP
[3] PSCAD/EMTDC [4], indicate some of the assumptions
that limit its applicability at the high frequencies. Additionally,
for the GSM, the resistive model has been utilized, which
is not perfect for lightning studies. The tower impedance
changes from the tower top to the tower bottom as the wave
travels. A proper GS can provide a low-impedance path for
the lightning currents into the soil to dampen the occurred
transient overvoltages. However, the modeling of GSs is
exceedingly difficult, because of its dynamic behaviors such as
a multilayer structure [5], [6], and the frequency dependency of
soil resistivity and permittivity [7]. The theoretical methods of
the harmonic impedance calculation are based on quasi-static
or full-wave approaches. The quasi-static techniques, such as
circuit theory or transmission-line model (TLM) [8] fail to
provide precise results when used for the estimation of the
harmonic impedance. Also, the main limiting factor of the
quasi-static approaches is low computational efficiency, which
makes them prohibitively slow, in particular for the harmonic
impedance calculations. The electrical dimensions of the
problem should be much smaller than the smallest wavelength
of the flowing current in the TLM. The full-wave methods can
be presented as the most accurate results over a wide frequency
range [9]. The numerical solution of Maxwell’s equations can
be performed using the finite element method (FEM) [10],
the method of moments (MoM) [11], the finite-difference
time-domain (FDTD) method [12]. The practical method is
defined as a direct method in which an excitation current is
injected at the top of the tower.

To estimate the surge impedance, several approaches have
been using based on analytical and practical methods. It is
worth noting that diverse expressions have been employed to
determine the surge impedance, which was entirely dependent
on the waveform of excitation current, the magnitude of the
excitation current, and induced voltages. Hence, there is no
agreement on the determination of surge impedance in the
time domain [13].

In the time domain, tower transient behavior and the
measured value of surge impedance are related to the angle
and direction of excitation waveform [13], [16], and [18].
In the frequency domain, the harmonic impedance of the
tower is a function of electromagnetic specifications and
geometry of the system [13]. Therefore, using procedures
based on the frequency domain is well suited to illustrate
TSI [17]. The same approach for the tower surge impedance
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calculation has been used to appraise GS modeling. Therefore,
among these techniques, MoM can be considered as an
efficient approach in the frequency-domain because 1) it uses
the thin-wire approximation with deducting two-dimensional
surface integration to the one-dimensional line, 2) the
harmonic impedance is not excitation waveform-dependent
[18], [13]. To carry on with the attempts performed in
[19], a numerical simulation is presented for harmonic
impedance calculation of the integrated model. This model
consists of detailed modeling of the tower and a GS in the
frequency-domain unitedly.

This paper is organized as follows. In Section II, the
developed full-wave approach is demonstrated concisely.
The proposed method validation is investigated in Section
III. The used delta-gap excitation model and the harmonic
impedance analysis of the simple tower considering different
GS configurations are shown in Section IV. Finally, the
simulation results of the tower geometry impact on harmonic
impedance considering multi-layer GS are analyzed as a
proposed integrated model in Section V. Conclusion notes are
described in Section VI.

II. APPROACH DESCRIPTION

This section is a general description of the theory of
dielectric layers modeling and the procedure of MoM
implementation [20]. The problem is defined by representing
each layer with a thickness d, resistivity ρ0, permittivity ε,
and permeability µ. This procedure is based on the developed
concept for appraisal of arbitrary microstrip structures in a
multilayer medium [21].

Fig. 1 shows a three-layered medium which is separated
by two planar interfaces. A vertical wire of length h along
the z-axis of the multi-layer medium is considered [22]. The
source and observation point could be assumed in any layer
of interest. For mathematical modeling, the mixed-potential
integral equation (MPIE) is utilized [23]. These potentials
consist of vector and scalar. Js is the current density on the
surface S of the perfect electric conductors (PECs) placed in
a layered media is obtained by applying boundary conditions
on the surface of the elements of the model given in (1)

−â× Es(r) = â× Ei(r) (1)

where Ei(r), Es(r), and r are the incident electric field,
scattered field, and the position vector defined according to the
rectangular coordinate system, respectively. The expression of
electric current density Js(r) and surface charge density ρs(r)
are related to in (2)

∇.Js(r) + jωρs(r) = 0 (2)

where ω and ρs are the angular frequency and density
of electric charge, respectively. The MPIE formulation is
obtained by fulfilling the boundary condition at the surface
of elements and are given in (3)

Es(r) = [−jωA(r)−∇V (r)] (3)

where A(r) and V (r) being potential of magnetic vector and
electric scalar potential, respectively. The gradient operator is
∇. By substituting (3) into (1) gives (4)
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Fig. 1. Illustration of multi-layer medium.

â× [jωA(r) +∇V (r)] = â× Ei(r), r on S (4)

In this paper, the presented formula in (5) is selected as a
Green’s functions form for the magnetic vector potential [24].
The potentials could be explained in terms of Green’s
functions, which are obtained on the base of spectral-domain
Green’s functions for microstrip structures given in (6) and (7)

GA =

 Gxx Gxy Gxz
Gyx Gyy 0
Gzx 0 Gzz

 (5)

V (r) =

∫
S

Gv (r | r′) ρs (r′) dS′ (6)

A(r) =

∫
S

GA (r | r′) · Js (r′) dS′ (7)

where GA and Gv are magnetic vector and electric scalar
potential Green’s function, respectively. The spatial domain
Green’s functions are determined easily using inverse Fourier
transform of its spectral pairs [24].

GA,v =
1

2π

∫ ∞
0

G̃A,v (kλ) J0 (kλλ) kλdkλ (8)

where kλ = (k2x + k2y)0.5, and kx, ky are wave vector
components in the each layer on xy plane. ρ is J0 is first
kind Bessel’s function, and G̃A,v is the Green’s function for
spectral domain [23]. The radial distance between the source
segment and the point for calculating the electric field is λ.
It should be pointed out that Sommerfeld integrals presented
in (8) is solved numerically.

III. MODEL VERIFICATION

The validation of the models against experimental results
is the most crucial part of the modeling. However, there
has not been a comprehensive comparison between modeling
and experimenting with the input impedance of towers
connected to a ground electrode buried in multi-layer soil.
The fundamental reasons for the lack of comparison are: 1)
the measured voltage is path-dependent at the high frequencies
between any two points, 2) there are complexities of measuring
each layer’s electrical parameters in a multi-layer soil
structure. Due to the noted practical limitations for validation,
NEC-4, as a widely accepted numerical electromagnetic code,
is applied to investigating the presented method [25].
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Fig. 2. Vertical electrode buried in soil which is connected to very simple
tower.
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Fig. 3. Current distribution along the ground electrode and tower at 10 MHz.
(a) absolute value (b) phase angle.

In this section, to verify the proposed method, a very simple
case, consisting of a tower and vertical ground electrode
(VGE), is applied. An antenna theory approach [13] is well
suited to the frequency domain analysis of layered microstrip
structures to calculate the Green’s functions for multi-layer
media, which are basically shown by Sommerfeld’s integrals
and formulas in the spatial and spectral domain, respectively.

Fig. 2 shows the tower geometrical configuration, and the
junction point between the tower and ground electrode is used
to excite the ground surface by a 1-V voltage source. A 0.4-m
cylindrical tower with a 5-mm diameter is considered. The
soil is characterized by a resistivity of 10 Ω.m and a relative
permittivity of 10. This integrated model, tower, and GS are
simulated numerically using a full-wave method.

Figs. 3(a) and (b) present the absolute value and phase angle
of the current distribution vector along with the integrated
model at higher frequencies, namely 10 MHz. The obtained
results through NEC-4 are also illustrated in Fig. 3 along the
z-axis. It can be seen that two methods predict similar behavior
in the estimation of current distribution. This approach’s
usefulness is validated from the excellent consensus between
the proposed method’s results and computed results by
NEC-4. It is seen that the proposed method can compute
the distribution of current along with the integrated model
precisely. The differences between absolute values in Fig. 3(a)
refers to the selected basis function for the excitation source
at the excitation terminal. The terminal is excited by an ideal
voltage source of magnitude Vs in the integrated model. The
triangular basis functions are employed. If δ −→ 0, the
induced terminal current passes into the ideal voltage source,
and subsequently, it will expand to the half-subsectional basis
function. An incident field is provided by the delta-gap voltage
source at the excitation terminal.

IV. ANALYSIS OF HARMONIC IMPEDANCE OF THE
INTEGRATED MODEL IN THE FREQUENCY DOMAIN

The most relevant contribution of lightning impulse for
the outage rate of PTLs comes out from the tower surge
impedance and the tower-footing GSs. The typical tower
surge impedance characteristic and dynamic behavior of
GSs are analyzed in detail elsewhere (e.g., [7]). According
to the measurement expenses, complications of working
on high-frequency phenomena, and the towers’ diversity,
few measurement results are presented. Also, the detailed
information about the tested towers and their GS condition is
not accessible. Numerical solvers are widely used to analyze
the harmonic impedance of towers and GSs.

A. Harmonic Impedance Calculation Based on MoM

The harmonic impedance is extremely helpful in the
transient analysis. It is given by (9)

Zinput(f) =
V (f)

I(f)
(9)

where I(f) and V (f) are phasors of the injected current
and the steady-state harmonic electric potential at the injection
point in reference to the remote terminal, respectively(see [29],
[31]). It depends on the electromagnetic characteristics and
the geometry of the medium, and not on excitation. The
input harmonic impedance of the integrated model can be
calculated from the MoM matrix directly. Based on MoM, a
full-wave frequency-domain approach, the integrated model is
divided into N small segments. Accordingly, a lower number
of segments needs to be taken into account (see [24]).

1) Excitation Model: Two theoretical models can be
applied to an excitation source modeling, namely, delta-gap
and impressed current models [26]. In this part, the modeling
of the delta-gap excitation approach is reviewed concisely.
According to the presented model in [26], the tower is excited
by the voltage source Vs, applied within a tiny gap region of
length δ −→ 0 and across the reference plate (perfect electric
conductor (PEC)) and the excitation terminal (see Fig. 4(a)).
To obtain finite input impedance, a nontrivial voltage must
always be induced across the gap, which has a width of almost
zero. Thin wire approximation is employed to compute the
distributed currents along all conductors in the mentioned
case. To avoid the first segment current discontinuity, the
first segment is utilized to create the induced terminal current
at each frequency. Within the MoM methodology, Fig. 4(b)
shows the expanded finite series of current distribution on the
surface of conductors, which is located on the multi-layer
medium. To solve (4), the electric current density on the
conductors surface (tower and vertical ground electrode) can
be defined as follow:

Js (r′) = Itft (r′) +

N∑
n=1

Icfn (r′) (10)

where the half-subsectional basis function, ft (r′), generates
terminal current and fn (r′) represents full-subsection basis
functions. It and Ic denote the induced current coefficient
that is associated with half-subsectional basis function and the
unknown coefficients that are associated with the triangular
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basis functions, respectively [27]. The voltage source of the
delta gap at the tower top creates the incident excitation field
given by (11)

Ei = Vsδ (r − r′) â (11)

where r′ is the terminal and r is the distance along with
the integrated model. As presented in Fig. 4(b), the induced
terminal current, It, goes along the voltage source, which
expands into a half-subsectional basis function, also located
at rn. The identical MPIE governing the surface current, Js,
on the surfaces of the integrated model conductors is given
by (12)∫

GA (r | r′) · JS (r′) dS′ + Vsδ (r − r′) â = 0 (12)

2) Integration Path Influence on the harmonic Impedance:
It is well known that the voltage between two points along a
determined path in the general case is given by (13)

Vs =

∫
s

−→
E total ·

−→
dl = ∆V (r)− ∂

∂t

∫
~A ·
−→
dl (13)

−→
E total =

−→
E i +

−→
Es (14)

where S shows the integration path on the excitation terminal.
In the case of an electrostatic field, the voltage value is not
dependent on the integration path and it is unique. Once
the current distribution has been computed along with the
components, the electric field can be computed at any point by
summing the contributions due to the currents in each segment.
In this situation, the last term of (13) is zero and the voltage
is exactly different from electric scalar potentials.

Generally speaking, for a dynamic electromagnetic field, the
electric field is not conservative and the integral of the electric
field between any two points is path-dependent. Due to this
issue and to determine a unique voltage, the gradient of the
scalar potential calculated along a unique straight path extends
to the remote ground reference point. The path-dependent
voltage is estimated by (15) expression based on Faraday’s
law.

V
′
(r)− V (r) =

∂

∂t

∫
~B ·
−→
dS (15)

where V
′
(r), V (r), and B are voltages obtained along a

path on S and magnetic flux density, respectively. The input
impedance at the excitation terminal is calculated as follows:

Zinput(f) =
Vs
It

= −
∫
S

−→
E total ·

−→
dl

It
(16)

One way to circumvent the problem of path dependence is
to use the scalar potential instead of the voltage as the integral
of the electric field over a given path. Such an approach has
the benefit that the scalar potential is uniquely derived. Hence,
with this assumption, the voltage or the integrated value is
independent of the integration path [13]. Adaptive Simpson’s
integration is employed to evaluate the integrals over the finite
interval, while Mosig’s method of averages is applied to assess
the integrals over the infinite interval, which features a very
fast convergence [32].

3) Terminal Length Effect on the Harmonic Impedance:
The presence of the excitation terminal can create a parasitic
inductance [30]. It can be estimated by (17)

TABLE I
EXCITATION TERMINAL IMPEDANCE MAGNITUDE

Terminal Length (mm) Impedance (Ω)
10 0.10484
50 1.25520
100 3.31200
1000 61.4200

L = 0.2× h×
(

ln
2h

b
+

0.223b

h
+ 0.5

)
[nH] (17)

where h and b are the length and width of the excitation
terminal in mm, respectively. For instance, for a conductor
radius of 12.5 mm, the port width is set to 25 mm. The
terminal’s impedance magnitude (ωL) for several port lengths
in the maximum frequency of 10 MHz is given in Table I.
This table shows that to achieve a negligible impedance, the
excitation terminal length must be no longer than 100 mm.
This length is considered for the excitation segment.

4) Moment Impedance Matrix: In this part, the impedance
matrix of the system is obtained by making use of the MoM
solution to Maxwell’s equations. Maxwell’s equations are
reduced to a matrix form by applying to (12). The electric
field at the observation point will be computed once finding
the current of each segment. The moment impedance matrix is
defined by (18). Also, the impedance matrix can be expressed
by (19). Eventually, by formulating the problem as a close
form matrix, given by (20), unknown coefficients vector is
computed [27]. Z1,1 · · · Z1,N+1

...
. . .

...
Z1+N,1 · · · Z1+N,N+1


 It

...
0

 =

 Vs
...
0

 (18)

(
Ztt Ztc

Zct Zcc

)(
It

Ic

)
=

(
Vs
0

)
(19)

where Zii(f) and Zij(f) represent self and mutual
impedance, respectively which i, j ∈ {t, c}. Ic can be obtained
from the following resultant matrix equations:

[z][I] = [Vs] (20)

where [z],[I], and [Vs] are the moment impedance matrix,
the unknown coefficients vector, and the excitation vector,
respectively. Finally, for the wide frequency range, the
relation between the terminal voltage and induced current
in an impedance matrix form is obtained from the moment
impedance matrix by manipulation of (19). Zinput is given as
follow:

Zinput(f) = Ztt(f)− Ztc(f) (Zcc(f))
−1
Zct(f) (21)

where Zinput(f) is the calculated harmonic impedance. From
Fig. 6, the proposed method for calculating long integration
path harmonic impedance converges to the impedance
estimated by the conventional method for long integration
path.
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Fig. 4. Setup for the calculation of harmonic impedance of the integrated
model. (a) delta-gap excitation generator, (b) triangular basis functions, and
the segmented integrated model.

B. Grounding System Effect on Integrated Model
Harmonic Impedance

To assess the GS effect on the harmonic impedance of a
tower, a cylindrical tower is considered. The specification of
this case is adapted from [13]. The configurations are shown
in Fig. 5. The tower is placed in the upper layer, and the
depth of the first layer is equal to the tower length. The upper
layer medium is an air, which is supposed to be lossless and
characterized by magnetic permeability µ0 and permittivity
ε0. The input impedance of the problem is calculated with
and without a real model of the GS. The end of the tower is
connected to the zero-potential ground, PEC (see Fig. 5(a)),
and in the Figs. 5(b) and (c), the tower is connected to the
VGE length of 3-m buried in soil with a resistivity of 100 and
1000 Ωm, respectively. The related permittivity of soil is set
to 10.

To further appraise the impact of the integration path on
the harmonic impedance, various lengths (0.5, 2, 50, 100-m)
of the integration path are taken into account. The harmonic
impedance of the integrated model is illustrated in Fig. 6.
It is clear from the figure that the harmonic impedance
strongly depends on the length of the integration path (Paths
in Fig. 6). In this paper, the concept of remote terminal
voltage which is presented by Grcev as a scalar potential [13]
is used for validating the calculated harmonic impedance
of the integrated model, which was presented as a direct
characterization in Section IV-A-4. The corresponding voltage
for the infinity case is almost equivalent to the scalar
potential. The path-dependence effect on harmonic impedance
is visible at frequencies under 700 kHz. It is clear that the
applied method must be rigorously checked for the impact of
path dependency on the harmonic impedance.

Fig. 7 shows the obtained harmonic impedance using TLM
and MoM, which have the same results up to the first
frequency (FRF) of 0.75 MHz when assuming a PEC. The
full-wave approach can calculate the minimum and maximum
values of input harmonic impedance at the higher frequencies
more accurately than the TLM method, which does not
calculate zero or infinite accurately. The high deviations at the
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Fig. 5. Geometry of the two-layer medium. (a) tower end is connected to
PEC adapted from [13], (b) integrated model which tower end is connected
to vertical electrode buried in soil resistivity of 100 Ωm, and (c) resistivity
of 1000 Ωm.

specific frequencies may be attributed to radiation loss, which
the full-wave model considers. The TLM method does not
consider the mutual coupling between the adjacent segments,
so it is expected that they might lead to differences in the
high-frequency response. In the TLM, the VGE is supposed
to have zero resistivity and the tower is simulated by a surge
impedance whose value is calculated by (22)

Zc = 60 ln
Htower

atower
(22)

where Htower and atower are the height and radius of the tower
in meters, respectively. Zc has a value of 317.9 Ω for the tower
radius of 0.5 m and the tower height of 100 m [13], [15].
The detailed formulation of the grounding system modeling
using the TLM can be found in [14]. It is assumed that the
3-m vertical electrode is buried in the soil with two different
resistivities of [ρ= 100 Ω.m, Fig. 5(b)] and [ρ= 1000 Ω.m,
Fig. 5(c)]. The influence of an accurate model of the GS on
the input impedance is illustrated. It may be noted in Figs. 7
and 8 that the TLM model greatly overestimates the values of
harmonic impedance at high frequencies. Also, the harmonic
impedance of the integrated model has a different behavior
from the estimated harmonic impedance of the tower, which is
connected to the perfect GS. This dissimilarity at the frequency
of resonance and different behavior at high frequency may be
ascribed to change system transfer function in the frequency
domain and radiation losses. The subsequent stroke impulse
with a larger front rise rate has higher frequency contents in
comparison with the first stroke impulse [29]. It is worth noting
that the use of the TLM could be revised principally at the
lightning studies [13].

V. IMPACT OF TOWER GEOMETRY ON HARMONIC
IMPEDANCE CONSIDERING MULTILAYER SOIL

In this section, to further assess the applicability of
the proposed integrated model, the input impedance of the
typical full-sized HVDC tower is investigated compared to
an approximated model of the towers in the frequency
domain [17]. The tower is simulated with three levels of
detail. Firstly, in a very simplified model, only the main
cylinder with a height of 89.5 m and simple cross arm is
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Fig. 7. Geometry of the two-layer medium. (a) tower end is connected to
PEC adapted from [13], (b) integrated model which tower end is connected
to vertical electrode buried in soil resistivity of 100 Ωm, and (c) resistivity
of 1000 Ωm.
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Fig. 8. Harmonic impedance of tower and its connected VGE [absolute value
(left column) and phase angel (right column)] shown in Fig. 5(b) [ρ= 100 Ωm]
and Fig. 5(c) [ρ= 1000 Ωm]. Full-wave model: red line, TLM model: blue
dashed line.

considered [tower(a), Fig. 9(a)]. Next, the simplified model,
four legs and cross arm with the width of 20 m are added to
the geometry [tower(b), Fig. 9(b)]. Finally, all members and
components of the steel lattices tower are taken into account
in [(tower(c), Fig. 9(c)] as a complex model. The equivalent
model of the presented integrated model in the frequency
domain, the medium of the integrated model, and the top view
of the real tower are shown, respectively in Figs. 9(d), (e), and
(f). For each case, the harmonic impedance is calculated up
to 10 MHz. The full-wave method based on MoM solutions
to Maxwell’s equations is used for evaluating the harmonic
impedance observed from the tower top. This model has been
extensively used to determine the transient surge impedance
in lightning studies. It is worth noting that the real tower
structure is much more complicated compared with the very
simple equivalents (see Fig. 9) [28]. The influence of the tower
elements on the harmonic impedance with an accurate model
of GS is analyzed unitedly in this study.

All towers are connected to the VGE buried in uniform and
multilayer soil structures. To this aim, two configurations of
the soil layers are defined in Table II with resistance values of
100 and 1000 Ωm. A soil permittivity is set to 10 for all cases.
The electrode is 3-m long and has a diameter of 30 mm. The
input impedance seen from the tower top is determined as the
harmonic impedance in the frequency domain, as explained in
section IV-B.

Fig. 10 shows simulation results of the computed harmonic
impedance of the tower, which is connected to the VGE with
the adopted parameters in Table II for case 1. In this case,
the maximum value of harmonic impedance magnitude for
the presented tower has a noticeable difference between the
simplified towers (tower (a) and (b)) and the complex model
of the tower.

For case 2, the soil is characterized by the resistivity of 1000
Ωm. Towers are connected to this GS. According to Fig. 10,
the obtained harmonic impedance of a very simplified tower
is markedly higher than the obtained results for Figs. 9(b) and
(c). The peak values of the harmonic impedance magnitude
are 23 and 140 for cases 1 and 2, respectively. The LF
harmonic impedance is the same for all towers in each case.
The values of RLF are 33.9 and 313 Ω for the case of 1 and
2, respectively. It can be seen that all towers have the same
response at low frequencies up to FRF. For instance, in case
1, the FRF value is different and changes from 1.4 MHz for
the tower (a) to 0.92 MHz for the tower (c). It varies from 1.2
MHz for the tower (a) to 1 MHz for the tower (c) in case 2.

To further analyze the influence of the tower-footing GS
on the harmonic impedance of the integrated model, the same
VGE with a length of 3-m buried in a multi-layer soil is taken
into account in cases of 3 and 4. The upper soil layer depth is
set to d2 =1m. The electrical parameters of soil are given in
Table II. The obtained results associated with the harmonic
impedance (amplitude and phase angle) observed from the
tower top are shown in Fig. V.

For case 3, the maximum value of harmonic impedance
magnitude is significantly distinct between the illustrated
towers in Fig. 9. The maximum value of input impedance for
the tower in Fig. 9(a) has appeared in the second resonant
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Fig. 9. HVDC tower side view. (a) very simplified structure, (b) simplified structure, (c) real tower, (d) frequency-dependent representation of tower which
is connected to the ground electrode, (e) medium of integrated model, (f) 2-D top view of the simulated real tower in the X-Y plane.

TABLE II
ADOPTED VALUES OF THE SOIL RESISTIVITY

Ground structures ρ1(Ω.m) ρ2(Ω.m)
Case 1 (uniform soil) 100 100
Case 2 (uniform soil) 1000 1000
Case 3 (multilayer soil) 100 1000
Case 4 (multilayer soil) 1000 100

frequency at 4MHz, but the peak value of the harmonic
impedance of the complex tower model occurs at 6 MHz. The
results show different behavior for the simplified and complex
models depending on the differences related to the maximum
values of harmonic impedance at resonance frequencies [see
Fig. V(a)]. A predicted impedance using a full-wave approach
might be smaller than the predicted values for a very simplified
tower. Differences could become very significant, especially
close resonant frequencies.

To supplementary evaluate the effect of the buried VGE in
multi-layer soil on the integrated model harmonic impedance,
the upper and lower soil layers are, respectively, characterized
by resistivity of ρ1=1000Ωm and ρ2=100Ωm, both having
the same relative electric permittivity of 10. (see case 4 in
Table II). The magnitude and phase angle of the harmonic
impedance of this case is demonstrated in Fig. V(b). From the
results shown here, it is observed that the harmonic impedance
is a function of different parameters such as the tower’s
geometry and electromagnetic characteristics of medium and
tower footing GS specifications. The influence of the tower
elements and the exact model of the GS on the peak value
of harmonic impedance magnitude is briefly presented in
Table III. VI. CONCLUSIONS

This paper can be regarded as a continuation of the work
developed by Grcev and Ametani in [13] and [17]. A precise
full-wave MoM-based solution of Maxwell’s equations for
calculating the harmonic impedance’s integrated model was
proposed. The contributions of this paper are listed as follows:

a) A comprehensive methodology based on the full-wave
approach was introduced, which can directly provide the
integrated model’s harmonic impedance consisting of a tower
and grounding system.
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Fig. 10. Influence of tower model on the harmonic impedance [absolute value
and phase angle] of the integrated model. The ground electrode of towers is
buried in the uniform soil (see cases 1 and 2 in Table II).
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Fig. 11. Influence of a tower model on harmonic impedance [absolute value
and phase angle] of the integrated model. The ground electrode of towers is
buried in the multilayer soil (see cases 3 and 4 in Table II)

b) The impedance vectors, including the self and mutual
impedances, are calculated in the multi-layer medium using
MoM matrix directly, which differs from the approach adopted
in [13] and [17].

c) Simulations are implemented to solve the full-wave
Maxwell’s equations regarding the tower’s detailed model and



TABLE III
COMPARISON OF MAX.VALUES OF THE INTEGRATED MODEL INPUT

IMPEDANCE

Cases
RLF [Ω] |Z|m[Ω] %diff(|Z|m) FRF(MHz)

(a) (b) (c) (a) (b) (c)

1 33.9 2924 2650 2371 23 1.4 1.13 0.92
2 313 1828 963 759 140 1.2 0.95 1
3 93.5 2070 1530 1315 57 1.7 0.91 1.02
4 42.6 2576 2275 1751 47 1.8 1 1.1

the grounding system’s real geometry.
d) The correctness of the theoretical procedure, TLM, is

examined through comparison with the obtained results of the
integrated model based on the developed full-wave approach.

e) In all cases, (tower (a) and (b)), overestimate the
peak value of the harmonic impedance in comparison to the
detailed model at the specific frequencies. However, the input
harmonic impedance of the tower in the frequency domain, and
consequently, the transient impedance in the time domain, was
different as long as the GS is assumed a perfectly conducting
plane. The related differences for cases 1, 2, 3, and 4 are
23, 140, 57, and 47% in the frequency domain. It can bring
about notable errors in transient impedance values in the time
domain.

f) The frequencies of resonance, the minimum and
maximum values of the harmonic impedance, varied when the
system transfer function is changed based on the GS model.

g) The exact model of the tower and grounding system
could be necessary for the back-flashover rate approximation
and other surge performances associated with the PTLs. These
are significant factors in optimizing the cost of insulation
coordination and the protection systems.
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