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SCOPE

This paper presents some theoretical aspects of power
transformers matrix representation, availables in EMTP and
ATPprograms, for the calculation of electromagnetic transients
in power systems. Some results of simulations made with the
program ATP (5.0 version for PC) are included, in these
simulations the matricial models mentioned above were used.
Finally a comparission is made between the results obtained
with these models and those obtained from field tests.
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1. INTRODUCTION

Electromagnetic transient studies give part of the necessary
information for an appropiate planning and a correct operation
of a power system. Such studies can be made through TNA
(Transient Network Analyzer) and digital programs. The
digital simulation of electromagnetic transients in a power
system is made modelling each of their components.On account
of that, the authors present in this paper some theoretical
aspects of power transformers matrix representation, availables
inEMTP and ATP programs, with the purpose of giving to the
users a better comprehension of them. The matrix models [R}-
[L] and [R]-[L]! have the following characteristics:
- their parameters can be calculated from de data of usual
short-circuit and excitation tests given by the manufacturer.
- they are flexible, they allow to model electromagnetic
characteristics of transformer with different degrees of
approximation on account of studies requirements and
available data.
- they are not valid for studies involving high frequencies.

2. [R}-{L] AND [R]-[L}* THREE PHASE TWO
WINDINGS TRANSFORMER MODEL [1] [2] [3] [4] [5]

For the obtention of the models mentioned above the following

hypotesis were assumed:

- the saturation curve A x i is linear for the core of the
transformer

- hysteresis and eddy current losses were ignored in this stage

- the capacitances distributed of the windings were neglected

2.1 Model [R]-[L]

Figure 1 shows a core type three phase transformer with two
windings.
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Figure 1 - Core type three phase transformer
with two windings
where:
Vpar Vpg» Vpc - inStantaneus voltages between the terminals
of the coils of the primary winding
Vsar Vsp» Vsc - the same for secondary winding

This transformer can be considered like a set of six coils
mutually coupled as shown in Figure 2, where

ipas ipgs ipc - in.stal‘nancus currents in the coils of theprimary
winding
iga» igps igc the same for the secondary winding
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Figure 2 - Scheme for the three phase transformer of Figure 1

The differencial matricial equation that relates the branch
voltages and currents of the transformer is :

Vea ipy ipa
= d . (01)
= [R]. . +[L]. a B
Vsc Isc Isc
where:

[R]- branch resistance diagonal matrix of the windings
[L]- branch inductance matrix of the winding

This equation leads to [R]-[L.] model of the transformer.
2.1.1 Derivation of the matrices [R] and [L]

In the next section one way to obtain [R] and [L] matrices
separately is described. The equation (01) for steady state
solution can be written as:
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ZF e Zc - self impedances of primary and secondary

. p coils

ZAp - mutal impedance between primary coils A and B

Zpc - mutual impedance between secondary coils B and C

7S, - mutual impedance between primary and secondary
coils A and C respectively

Figure 1 shows that the mutual inductances betweenlegs Iand

II are different from the ones between legs II and III,

consequently there will be necessary 6 excitation tests with 21

measurements (Ly=L,) for derivation the matrix jw[L]. The

following approximations are made because the above

mentioned test are not given by the manufacturer:

- The mutual inductances between primary coils are all equal

- The mutual inductances between secondary coils are all
equal

- The mutual inductances between the coils on the same leg
are all equal :

- The mutual inductances between primary and secondary
coils on different legs are all equal

The partition of matrix [Z] from equation (02) in four 3x3
submatrices leads to:
(]

[V ] [#] [z
] |02 (2] (0]
T T [ 0
¥ T [Fen Vs ]
iy J=[ion i 1]
:iS ]=[iSA s isc]t

Each submatrix in the above equation has only two different
elements: diagona! and off-diagonal.
Figure 3 shows the circuit associated with the equation (04).
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Figure 3 - Scheme of two-winding three phase transformer

For the two-winding phase unit the following tests are available:
a) positive (1) and zero (0) sequence excitation tests b) positive
(1) and zero (0) sequence short-circuit tests.

For excitation test the equation (04) in p.u. values, becomes:

(vl = jixfl . [17%) (05)
where:
[Vp™*] - vector of primary excitation voltages
{1,m] - vector of primary exciting currents
jIXP] - imaginary part of matrix [Z")

The Fortescue's transformation on equation (05) gives for
each sequence:

vex — ixP 1 mag

VPO _]XO IPO 06)
_ exc - ixXP [ mag 07
vPl Jxl P1 on

where:
XP - zero sequence magnetizing reactance
le - positive sequence magnetizing reactance

From the data of excitation tests given by the manufacturer, is
possible to calculate from equations (06) and (07) sequence
magnetizing reactances.

The sequence reactances and phase coordinate reactances are
related through:

p __1 P P

XP = Xg+2XD) (08)
p __1 P 13

XP = &5 XD ©9)

For the secondary winding is reasonable to assume that the
reactances in p.u. values are the same. The diagonal matrix [R]
is derived from the data given by the manufacturer.

Finally [Z?] and [Z5] matrices have the following diagonal
and off-diagonal elements, respectively:

ZP = RP+jXxP ZP=jxP
S S m m
7S = RS+jx P 7S=jxP
S S m m

For short-circuit test with winding resistances being ignored
the equation (04) in p.u. values, becomes:

[V, shor) = j [XP] . (1300 +§ [X P] . [L, 9 (10)

(0] =X Pe].. [T , o)+ X 5] [, ") (D)

where:
j [XPS1= (ZP)

j[XS] - imaginary part of matrix [Z5]
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The Fortescue's transformation on equations (10) and (11)
gives:
VPl shorl.__jXl P IP] shon+jleS X IS] short
(12)
o) =jXIPS . iplshon +leS . ISlshort

ot - . ) .
VPO short —JXO P IPO short +]XOPS . ISO short )
O= jXOPS . iposhon + jXOS . isoshon
From the data of positive and zero short-circuit tests given by,
the manufacturer, is possible to calculate:

\./Plshon . \'/Poshon .
Do = 2est™ (9 = Zpse™ (19
P1 PO

The equations (12) and (13) together with imaginary parts of
the impedances defined in equations (14) and (15) lead to:

X P = VGX,P - Xps Mo XS (16)

jXO PS_ V(]XOP . jxpsoshort) JXOS an

The diagonal element jX S and off diagonal element jX_PS of
matrix [ZPS] are derived from sequence reactance values X, S,
X, PS as stated by equations (08) and (09). -

2.1.2 Characteristics of the model [R]-[L]

The short-circuit reactances of the primary winding are
represented indirectly in the matrix [Z] through the differences
between the matrices [ZF] and [ZS] in p.u. values. The short-
circuit reactances of the secondary winding are represented
indirectly in the matrix [Z] through the differences between
the matrices [Z5] and [Z"] in p.u. values. It's therefore
important that the elements of matrix [Z] be calculated with
very high accuracy,this would be an important restriction of he
model. The exciting current must always be nonzero because
matrix [Z] becomes infinite for zero exciting current.

2.2 [R}-[L}? model
The equation (01) can be written as:

1?‘— li1= [L,,m,]‘l [vl- Em]" .[R].[i] (18)
where:

(L) - branch inductance matrix of the windings with
magnetizing branches included

When the magnetizing inductances tend to infinite, the limitof
equation (18) is:

S wemr - R G (19)
where:
Ly = lim L) 20)
without M] 2 e

magnetizing branches

The equations (19) and (20) lead to the "[R]-[L] model" of the
transformer.

2.2.1 Derivation of the matrices [R] and [L]*

In the next section one way to obtain [R] and [L]! matrices
separately is described. The diagonal matrix [R] is derived
from the data given by the manufacturer. In this section an
extension from Dr.H.Dommel's procedure [2], [4], [5], for
obtaining matrix {L]! in the case of single phase N-coil
transformer is made for two-winding three phase unit. From
here on it is best to work with p.u. values and the winding
resistances are ignored. From equation (04) the voltage drops
between primary and secondary windings are expressed as:

[Vpl - Vgl = (1271 - (ZPS)) . (1p) +

: : . 21
+([ZP5]- (2%)) . [Ig]

which can be written as:
. . i
[(Vp) - Vgl = 2] [{Igﬂ @

L [ZPS)- 12

(3 rows and 6 columns)
The magnetizing branches are ignored, then the sum of winding
currents must be zero, or:

[l + [g] = [O] (23)
From equations (22) and (23) results:

[[Vpl - [Vgl] = [Z7dweed] ] (24)

where matrix [Z“°*d] has 3 rows and 3 columns. When the
exciting currents are neglected the elements of matrix [Z] in
equation (04) become infinites, however the matrix [Zreduced]
does exist because their elements can be calculated from the
short-circuit tests data which are not influenced by exciting
currents. The Fortescue's transformation on equation (24)
gives for each sequence:

where:

(2] =127 - ZPS)

. S i
Vpy - Vgp = 2,70 T, @5
Vpo-Vso = Z¢™" Ipg (26)

For short-circuit tests the equations (25) and (26) become:
i/Plshon = ereduced "Iplshon i)
\./Poshort - 'Zoreduccd . iposhm (28)

From the data of positive and zero short-circuit tests given by
the manufacturer, is possible to use the equations (14) and
(15), which give: )

ereduced = ZPSIShon (29)

Z.'Orcduced = ipsoshon 30)

In this model the resistance and inductance parts of each branch
must be separated. This is best accomplished by building matrix
[Zredueed] only from the reactance part of the short-circuit test
data. The diagonal element jX ™ and off diagonal element
jX ™ of matrix [Z™] are derived from sequence reactance
values Xpg ™", Xps ot as stated by equations (08) and (09).

In terms of admittance the equation (27) is rewritten as:
[p] = [Yreduced] [[Vp] - [Vgl] 31
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where :
[Y.rrcduced] = [2reduced] -1

Equation (31) can be rewritten as:

: . : [Vp)
I,] = Yreduced ' educed . . 32)
pl = I [Y" 1] EV ]:|

S
From equation (23) :
(gl = - (i) 33)
Equations (32) and (33) give :
;] . [Vpl
Pl o= Y'. P (34)
[Is) [Vg)
where :
- [Y™d] -[Yred]
Yls= . .
- [Y™4) [Y™ed)

Finally for two windings three phase transformer is valid :
[L1! = jwy™)
2.2.2 Characteristics of the model [R]-[L]?

In the last section 2.2.1 a matricial model of two windings
three phase transformer was obtained in which the excitings
currents were ignored. This could not be done in the model
[R]-[L]of item 2.1. The matrix [L]! is symmetric and singular
(does not have inverse matrix of it), consequently this notation
founded in different manual of EMTP does not have
mathematical meaning, actually the notation {A] is used. The
procedure for the obtention of [R]-[L] and [R}-[L]} models for
three or more windings of a three phase transformer is
conceptually equal to the procedure used here for two windings
three phase transformer.

3. ADDITTION OF OTHER CHARACTERISTICS (1] [2]

In this section a briefly description of how to add other
characteristics of the transformer,s iron core is made.’

3.1 Inclusion of magnetizing branches

For [R]-[L] model the excitings currents must always be
nonzero, so the magnetizing branches are included.

For [R}-[L]"! model a procedure to incorporate this branches
isdeveloped in this section. From data of excitation tests given
by the manufacturer, is possible to calculate from equations
(06) and (07) zero and positive sequence magnetizing
admittances: Y™ and Y™,. The diagonal element jY, ™ and
off diagonal elementj Y ™ of matrix [Y™€] arederived from
sequence reactance values Y™, Y,™ as stated by equations
(08) and (09).

If the secondary winding is the closest to the core, the submatrix
[Y™] is additioned to the matrix [Y*] of the section 2.2.1 as:

[Yred]
[Y™ed] + [y™meg)

[?red]

Y= :
X oml - [Yed]

Finally the new matrix [L]"! looks like as:
(L1 = jwiy”

Cr m]
3.2 Inclusion of Hysteresis and Eddy Current Losses

The losses in the iron-core of the transforemr consist of two
parts: a) Hysteresis losses b) Eddy Current losses. The sum of
the two parts of losses is incorporated in the same way in the
models [R]-[L] and [R]-[L1"! as explained here. From the zero
and positive sequence excitation losses data given by the
manufacturer is possible to obtain: ’

Pre | Pre o

Gml = p.u. GmO = p.u.
Sy Sp
where :
Pr. o» Pre | - Zero and positive sequence excitation losses
S, - power rating
G,, G, - zero and positive magnetizing conductances

The self and mutual elements of the resistance matrix [R ] in
phase quantities are:
1 1 2
= e—— — R = e —_ - ———
Rins 3 (GmO Gml) 3 (GmO G

This matrix [R, ], that represents excitation losses, is placed
across the terminals of the winding closest to the core. This
model of losses does not modify the matrix {R] of matricial
models.

3.3 Inclusion of Saturation Effects

Often, saturation curves supplied by manufacturers give RMS
voltages as a function of RMS currents, which has to be
convert t0 a A x i curve to represent saturation. In the
references [1][2] amathematical procedure is described which
changes Ve, X Ipyq into A x i curves, this is made by an
auxiliar program called SATURA (for ATP 5.0 version).

The representation of the characteristics A x i is made taking

into account two differents regions:

a) unsaturated region
b) saturation region

a) Inthisregion the magnetic couplings between the coils are
very strong,then the characteristics A x i is represented
as indicated in section 3.1.

b) Inthis region the magnetic couplings between the coils are
weaks, then the modelling is made through three modified
nonlinear inductances decoupled.

In the different versions of EMPT and ATP program are

available several models for the representation of nonlinear

elements [1] [2].

4. CASE STUDIES

In this section some results of simulations made with the

program ATP (5.0 version for PC) are presented:

- Switching surges during energization of a transformer bank

- Sawration effects on power transformer due to temporary
overvoltages

4.1 Switching surges

Switching surges were calculated due to energization of an
unloaded transformer bank, voltages ratings 150/31.5/6.3kV,
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apparent power ratings 50/50/15 MVA, type of connection
Yyd. The neutral of the primary winding is directly earthed,
while the neutral of the secondary winding is earthed through
a 20 ohm resistance. This transformer belong to the 150 kV
network transmission of Uruguay.

The following deterministic studies of energization were
made from high voltage side.

Case 1 - The transformer bank was modelling through Saturable

Transformer Component , the losses in the iron core were

ignored.

Case 2 - The same model as in Case 1 but the losses in the iron
~core were taken into account.

Case 3 - The transformer bank was modelling through the

matricial model [R]-[L]}, the losses in the iron core were

ignored.

Case 4 - The same model as in Case 3 but the iron core losses

were taken into account.

In all the cases the characteristic A x i for each unit was used

and the following values were chosen: - inicial voltage (before

the energization) equal to 1.04 pu

- time step equal to 50 microseconds

- simulation time equal to 6 cycles

Figure 4 shows the voltage Phase B-Neutral in the 31.5 kV
winding from Case 1.There are spurious numerical oscillations
that crate transients overvoltages very high but not real.

Figure 4 - Overvoltage Phase B - Neutral (31.5 kV)(Case 1)

Figure 5 shows the same voltage from Case 2. There is a
damping of the numerical oscillations because the resistances

that represent iron core losses are included.
uru'>1

For the different cases mentioned above the maximum and
minimum values of the voltage Phase B-Neutral were obtained

as indicated in Table 1.

Table I - Voltage Phase B-Neutral (31.5kV)

Phase B - Maximum Minimum
Neutral (pu) (pu)
Case 1 2.078 -2.497
Case 2 1.222 -1.474
Case 3 1.065 -1.049
Case 4 1.059 -1.043

From the results presented it can be concluded that :
- the matricial model has a better perfomance because it does

not present numerical oscillations.

- the numerical oscillations that present the Saturable
Transformer Component can be damped with the allocation

of high resistances.

- the results obtained with matricial models in the Cases 3 and

4 are very similar.

4.2 Temporary overvoltages

In this section, for the power system of Figure 7,the values of
temporary overvoltages derived from a simulation and those
from field tests data are presented, with the objetive toevaluate
the perfomance of the matricial model "[R]-[L]".

2
~h

JAGUARA

TAQUARIL

Figure 5 - Overvoltage Phase B - Neutral (31.5 kV)(Case 2)

Figure 6 shows the same voltage from Case 3, practically there
are no numerical oscillations.

A\ A I~ ,.r‘~“ [ \\

\ ! [ F AN
e IS T T AT
\\!1 \\/"“ \{7‘:;««-:{\/‘ 200s “\,i!

134338

s maese o
T e.cczooe T ..

Figure 6 - Overvoltage Phase B - Neutral (31.5 kV)(Case 3)

Figure 7 - Power network configuration

In the power network configuration of Figure 7:

G - Generator of voltage rating 13.8kV and power rating 112
MVA

T - Transformer bank of voltage ratings 13.8/13.8/345 kV,
and power rating 120/120/240 MVA

L - Transmission line with length equal to 398 km

R - Reactor bank of 56 MV Ar

The data for the [R]-[L]! model of the transformer bank T,
and the other elements of the network were obtained of the
reference [6]. In the simulation the curves A xi and the losses
in the iron core for each unit were taken into account, and the
following values were adopted:

- time step equal to 50 microseconds

- simulation time equal to 9 cycles

Maximum and minimum values of line to ground voltage in
Jaguaré and Taquaril busbars are presented in the tables Il and
118
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Table II - Line to ground voltage in Jaguar4 terminal

Jaguara Maximum (kV) Minimum (kV)
Case 360.2 -361.0
Field test [8] 364.0 -360.0

Table III - Line to ground voltage in Taquaril terminal

Taquaril Maximum (kV) Minimum (kV)
Case 424.3 -422.8
Field test [8] 419.0 -414.0

Figures 8 and 9 show line to ground voltages in Jaguard and
Taquaril busbars obtained from simulations.
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Figure 8 - Line to ground voltage in Jaguard

3.5,

’
Bl Ldaxo “l’-\ T e
oz acey T

- ~ ./
| /"

Figure 9 - Line to ground voltage in Taquaril

Figures 10 and 11 show line to ground voltages for the same
terminals, from reference [6].
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Figure 11 - Line to ground voltage in Taquaril terminal

From the results presented in this section it can be concluded

that:

- the shapes of the curves obtained from simulations and field
tests data are very similar

- the maximum difference calculated between the maximum
values from simulations and field tests data was 2%. The
same for minimum values

5. CONCLUSIONS

In the above studies the matrix representation,” [R}-[L]" model"
has a very good behavior for switching surges and temporary
overvoltages:there weren,t numerical oscillations and there
was a good agreement between the digital simulation and field
tests data.

For representation of three phase core type transformer the
matricial models didn't require the addition of extra delta-
connected winding.

From the mentioned above the authors can conclude that the
matricial models of power transformers become a better
alternative in relation to others models availables in EMTP
and ATP programs.
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