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ABSTRACT

The paper describes a new form of EMTP-compatible
transformer model based on MODAL analysis. The
MODAL model is shown to be conceptually different
from the form of model proposed be Degeneff and to
have much more in common with Wedepohl’s MODAL
transmission line theory. Given results, comparing
predicted results with oscillographic records for a test
transformer, show that the time-domain modal model is
capable of accurately accounting for the frequency-
dependent effects of practical transformers with high
computational efficiency.
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1 INTRODUCTION

Up to the present, EMTPs have been deficient in not
incorporating a transformer model capable of accurately
representing the behaviour of transformers at the high
frequencies generally associated with electromagnetic
transient phenomena (say from 200 Hz to 1 MHz). This
is clearly a serious deficiency given the major role of
transformers in any power network. In particular, it is
not possible with present EMTPs to investigate with any
confidence whether certain operating conditions, or the
inception of certain network faults, could give rise to
hazardous transient overvoltages within a transformer.
Nor is it possible to properly account for transient
interactions between parts of a system operating at
different voltage levels.

The difficulty in establishing an adequate transformer
model for EMTP implementation has been two-fold:

- Firstly, magnetic couplings within a transformer vary
with frequency in a rather complex way as a result of
eddy currents induced in the core. For example, at high
frequencies, magnetic couplings are relatively weak
since flux is unable to penetrate deeply into the core.
Also, the eddy currents give rise to frequency-dependent
damping effects which must be accurately represented if
the magnitude of transient oscillations is to be
accurately predicted. Hitherto, no one has been able to
include proper account of frequency-dependent self and

mutual  inductances, and associated frequency-
dependent resistances, in any time-domain model. The
paper explains how this difficulty may be overcome,
without compromise to accuracy, by the method of
modal analysis.

- Secondly, the conventional approach of NODAL
analysis [1] lacks sophistication and leads to a time-
domain model whose structure is too inefficient to allow
fast computation. This second difficulty is also
overcome, as explained in the paper, by employing
MODAL (as opposed to NODAL) analysis. This vastly
increases computational efficiency in the same way that
the FFT algorithim, by capitalizing on inherent
structural features, is able to vastly increase the speed of
calculations compared with direct implementation of the
DFT algorithim.

In fact, the concept of MODAL analysis applied to
transformers is similar to that routinely used in the
representation of polyphase transmission lines for
EMTP implementation. The advantage of MODAL
analysis in the representation of transformers is however
very much greater than for transmission-line
representation inasmuch as a transformer is far more
complex.

2 REVIEW OF THE THEORY OF MODAL
ANALYSIS

In the case of polyphase overhead transmission lines [2],
linear transformation by an eigenvector matrix Q (say)
converts the following pair of (matrix-vector)
simultaneous equations (the multiconductor
Telegraphers’ equations) :

dv dl
7 __zZI ad “—=-YV 1
= an — 1

into the equations of n completely independent single-
phase lines. Each of these is represented separately, in
the time domain, for EMTP implementation.
Interactions between phase and modal quantities are
transacted by the MODAL transformation matrix 0 (and
its inverse). Success of the modal method rests in the
fact that, for all practical purposes, the transformation
matrix Q turns out to be independent of frequency and is
therefore directly applicable in the time-domain.

IPST ’95 - International Conference on Power Systems Transients 101

Lisbon, 3-7 September 1995



In the case of transformers, behaviour is govemed by
the following pair of (matrix-vector) simultaneous
integro-differential equations:

ﬂ=— }Z(x,r)l('r) dt
dx 0
and 2)
-d—l=— }Y(x,‘c) Vit) dr
dx 0

where, as in equation (1), voltages and currents are
represented by their Laplace transforms. If the
transformer has N windings, then ¥ and I will be vectors
of dimension N. Correspondingly, Z(x,t) and ¥(x,7) will
be matrices of dimension N*N. Unlike the case of
polyphase transmission lines (equation (1)), where Z
and ¥ are independent of the longitudinal variable x, Z
and Y featuring in equation (2) are very much dependent
on the longitudinal variable. This makes their solution
very much more difficult than the solution of the
Telegraphers’ equations. So much so, that no analytic
solution has ever been found for equation (2) for a
general case.

If rather severe approximations are made, then, as
reported by Pirenne [3], it is possible to render the
transformer equations soluble - leading to the classical
results of Wagner [4], Rudenburg [5], Blume and
Boyajian [6]. Unfortunately, the extent of the
approximations required by each of the different
methods is so great as to render these classical solutions
to be of little value from a practical, quantitative
viewpoint. Nevertheless, classical studies have proved
valuable in providing qualitative insight into the general
nature of transient phenomena in transformers

Recent analytical work involving one of the present
authors [7,8,9] has shown that it is possible to solve the
transformer equations, i.e. solve equation (2), to any
required degree of accuracy using a subtle numerical
approach. The proposed solution is applicable to all
transformers, irrespective of the number of windings
and imrespective of any frequency-dependent
parameters. The only restriction is that the method is not
able to take account of nonlinear phenomena, such as
magnetic hysteresis. Fortunately, such nonlinear
phenomena are generally considered to have
insignificant effects at the high frequencies associated
with electomagnetic transient phenomena.

Because frequency-dependent parameters are involved,
MODAL solution of the transformer equations takes
place in the frequency domain, leading to a frequency-
domain transformer model referred to henceforth as the
frequency-domain prototype. The task is then to convert
this frequency-domain prototype into a time-domain
counterpart with a view to EMTP implementation.

This process is no different from that of modelling
overhead transmission lines for EMTP implementation.
A model is first established in the frequency domain
(generally involving frequency-dependent mritual
couplings and losses) and a time-domain counterpat is
then sought by one of a number of well-established
approaches.

ad
| R Y e

"1F “lF "lF HIF r
Iy il 1 I It I
5 1 3 4 S| e—
VB]T coil 1 —1 coil 2 J coil 3 coil 4 J TVBq
Is :FZF 4F=  4F = 4F:f 2F== I
W 7 8 9 10|
Vg T coil § coil 6 coil 7 coil 8 TVB
v
pE| e yie| pir
Il i I Il

e e T |
Tro o o of
Fig.1: Simple transformer representation

To highlight the basics of transformer modelling, Fig.1
shows a discrete representation of an illustrative 2-
winding transformer. The fact that there are only two
windings, and that the discretisation is course, is of no
significance so far as the present general discussion is
concerned. All that matters is that Fig.1 has the
structural form of a general transformer representation.
Note that there is no need for the capacitance to be
uniformly distributed as it is in Fig.1, or for certain
groups of capacitance to have the same value.

In general, all self inductances will be frequency
dependent, generally reducing with frequency.
Likewise, all mutual inductances, such as L,, (the
mutual inductance between coil 1 and coil 4 in the
figure), will generally be frequency-dependent in any
practical transformer. The presence of longitudinal
mutual inductances, such as L;;, in addition to lateral
mutual inductances such as L,;, is the main
distinguishing feature between transformers and
multiconductor transmission lines.

In Degeneff’s method of analysis [1], viz. NODAL
analysis, currents are injected at each node to form an
admittance equation which takes account of the self and
mutual inductances involved, as well as of the
admittances owing to the capacitance network. This
approach is straightforward but suffers from one major
drawback. This is that if frequency-dependent
parameters are to be properly represented, there is no
established method for accurately translating the
admittance equation obtained in the frequency domain
into the time domain.
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Although mathematically equivalent to Degeneff’s
admittance formulation, the method of MODAL
analysis [7,8,9] sets up a completely different structure.
Instead of injecting currents at the nodes, (e.g. nodes 1
to 10 in Fig.1), equations are set up in the form of a
discrete approximation to equation (2). This gives a set
of equations of the form :

Vik)-V(k-1)= Z Z(k,m) I(m)
I(k)y-I(k-1)= Z Y (km) V (m)

In MODAL analysis these equations are organised, as
described in reference [7], to give a MODAL voltage
equation. The advantage of the MODAL formulation is
that simple linear transformations reduce an original
representation such as that in Fig.1 to a set of decoupled
resonant circuits.

Taking the case of the illustrative representation shown
in Fig.1, with additional data as given in the appendix,
MODAL analysis [7,8] reduces this original
representation to a set of six decoupled resonant
circuits, plus one purely capacitive circuit and one
purely inductive circuit (inclusive of an ideal
transformer). These circuits are shown in Fig. 2 and
represent the transformer via the block diagram shown
in Fig.3, where V} is a vector representing the boundary
voltages (i.e. the voltages at the winding terminals) and
I represents the boundary currents. In the case of Fig.1:
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Fig.2 : Circuit representation of MODAL components
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which is evidently an admittance equation. This
equation describes the behaviour of the transformer seen
as a black box with 2NV external terminals (2 terminals
for each of the N windings). If some windings are in fact
grounded, connected in A, etc. then such connections
are understood to be made extemally by applying
appropriate boundary conditions to equation (3).

Voltages at the internal nodes inside the box are given
by

={QgP +Cy}Vp €3}

i.e. the MODAL model is able to calculate these from
the boundary voltages once the latter have been found
by solving the admittance equation.

In the above illustrative case (Fig.1, data as given), all
the transformer parameters are independent of
frequency and all losses have been neglected. The
upshot is that ¥, is purely inductive (its effects
represented by the circuit of Fig.2(a)), ¥ 3z is purely
capacitive [Fig.2(b)]. Most importantly, for ANY
transformer subject to the above restrictions, the
transformation matrices P and P, and the distribution
matrix Q, and Cy are all purely real and independent of
frequency.

3 TIME-DOMAIN MODAL MODELLING

The matrices P, Q and Cjy, for the illustrative case of
Fig.1 (with data as given) are, as noted above, purely
real and completely independent of frequency. In fact,
caculations give :

—-0.8358 -0.2095 -0.2795 ~0.1050 0.0781 0.0753
P= 0.4831 08983 0.1675 0.0617 —0.2857 —0.0910

—0.8358 -0.2095 0.2795 -0.1050 —0.0781 0.0753
| 0.4831 0.8983 -0.1675 0.0617 0.2857 -0.0910 |

0.2435 -0.7062 —0.4360 —0.2959 0.0759
0.2967 0.0000 0.6367 0.0000 -0.0608
0.2435 0.7062 -0.4360 0.2959 0.0759
04575 —0.0361 -0.1991 -0.6422 —0.4851
06122 0.0000 03677 -0.0000 0.7171
04575 0.0361 -0.1991 0.6422 —0.4851 |

[-0.4869
-0.7112

| -0.4869
Q = Zoom2
~0.0965
| -0.0732

0.17589 0.09197 0.00922 0.00864
0.03924 0.03219 0.03924 0.03219

C,, =|000922 0.00864 0.17589 0.09197
H 0.09197 0.17589 0.00864 0.00922
0.03219 0.03924 0.03219 0.03924

0.00864 0.00922 0.09197 0.17589

In this case (with reference to Fig.3) the MODAL model
can be implemented directly in the time domain as
follows. If the boundary voltages and currents are
known from previous calculations at time ¢ = ¢, then the
three components of equation (3) convert to the time

domain as follows. The first part, I, = Y, V3 converts
to the time domain as

(t+AD) = Gy vR(I+AL + iy (1) &)

which is simply an EMTP implementation of the circuit
of Fig.2(a). The capacitive network of Fig.2(b) is
similarly implemented directiy by the EMTP.

The third component, I’y = P g P, Vz, may be
incorporated into EMTP form by a process of MODAL
decomposition similar to that used in the representation
of polyphase transmission lines. The boundary voltages
in the time domain convert to a set of MODAL voltages
by the transformation

v(t) =P, vy (t) ©)

Note that this equation originated in the frequency
domain as V = P, Vg but converts directly into the time

domain by virtue of the fact that P, is purely real and
completely independent of frequency.

The action of the diagonal matix g, corresponds to
applying each modal voltage to its corresponding
MODAL network (see Fig.2(c)). E.g. the second
MODAL voltage (second element of v(¢)) is applied to
the circuit specified by Fig. 2(c)(ii). The action of the
modal circuit can be modelled by the EMTP in the usual
way. Boundary currents are obtained from the modal
currents (the currents flowing in the modal circuits) by
applying the transformation.

iz(=Pi() 0]

This process leads to a standard time-domain equation
for representing the component I’y = P{ g P, Vy. Viz.

Up(t+An = G'p vp(t+Af) + Dy (£) ®)
as detailed in reference [10].

This completes conversion of the frequency domain
prototype into the time domain for the illustrative case.

Once the overall admittance equation has been solved,
the voltages at the internal nodes are determined by

V' (t+Af) = Qv(t+ At) + Cyvg(t+AD) )

where the vector v (t+At)is obtained as detailed in
reference [10].
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4 MODELLING OF PRACTICAL
TRANSFORMERS

The procedure described in the previous section applies
to all lossless transformers with frequency-independent
parameters. In practice, of course, transformers are not
lossless nor do they have frequency-independent
parameters. However, it turns out that very little
modification is required to fully account for the realities
of practical transformers.

To demonstrate this, Fig.4 shows a set of test windings

on a 25kVA core. The eight inner sections are
connected in series to form one winding and the eight
outer sections are connected in series to form a second
winding. Full details of this test set-up are given in
reference [9].

91 1 47 ’ 7 |81

Fig. 4 . Test windings on 25 kVA core (dimensions in
mm) . ’

As established in reference [11], the matrices P and Q in
the MODAL model (Fig.3), as well as the matrix Cy,
turn out to be real and frequency-independent for all
practical purposes. It is also the case that Y3z is purely
capacitive if, as is normally assumed, dielectric losses in
the insulation are considered to be negliable. It is also
the case, under the same conditions, that the diagonal
matrix { in the core of the model is also purely
capacitive.

Thus, differences between a lossless transformer with
frequency-independent parameters and a practical
transformer are accounted for within the matrices ¥, and
g in the MODAL model of Fig.3.

In the particularly simple case of the test windings
shown in Fig4, it turns out that the frequency
dependencies associated with ¥, can be represented by
simple R-L ladder networks replacing the inductive
elements of Fig.2a. Further work is in progress to find
an efficient general representation. Note that Y, is
purely inductive in character and so there are no
complex resonances to account for in this part of the
model. In fact ¥, corresponds to a full model of a

transformer when all capacitive effects are supressed
[10].

It now only remains to model the MODAL resonant
circuits. MODAL resonant circuits in practical cases are
found [11] to be different from those in Fig.2(c) by
including resistance. Also, all resistances and
inductances (R and L) are frequency dependent in a
general case. Fortunately, it turns out that it is only
necessary to represent R and L accurately in the vicinity
of the resonant frequency. Fig.5 shows the amplitude
responses of representative MODAL transfer functions
obtained from the frequency-domain. It is seen in Fig.5
that each can be accurately modelled by a transfer
function of the form

L.C
g (%)= T (10)
2 k
s+s —+
th chk

with

where the subscript £ denotes the k™ MODAL circuit.
Values for R, L, and C_ are obtained by a simple least

squares fit and apply to a simple RLC circuit.

- 3
a 15 9 1

10t 10° 1P
frequercy [Hz]

Fig.5 . Amplitude spectra of the modal transfer
Junctions (modes k = 1,5,9,13)
sample values of exact gk(jco)

ooooooo

least-squares approximation to eqn. (10)

5 PRACTICAL RESULTS

Fig.6a shows the unit step response halfway down the
primary winding of the test transformer (Fig.4) as
predicted by the time domain MODAL model for case 1
boundary conditions (the step being applied at one end
of the primary with all other terminals open circuit).
Fig.6b shows the corresponding test result. The
accuracy is quite remarkable, showing that the time
domain model is correctly representing damped
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resonant phenomena in a real transformer. Figs 7a and
7o give results for the quite different case 2 where the
two terminals of the secondary winding are both
grounded.
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Fig.6 : Voltage halfway down primary winding (Case:1)
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Fig.7 : Voltage halfway down primary winding (Case:2)
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6 CONCLUSIONS

The paper has shown that it is possible to accurately
account for the frequency-dependent behaviour of
practical transformers using a time-domain (EMTP-
compatible) model based on MODAL analysis. The
MODAL model also has the advantage of having an
inherently efficient structure for computation purposes.
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APPENDIX
Data for illustrative case
Self inductances :

Lij=Lp=Li; =Lyu=40H
L55 =L66 =L77=L33= 1.1H

Mutuat inductances :

L12= L23 = L34 =34H

L56= L57 = L-)g =09H
Ls=Ly=29H

L57 = Lsg = (0.7H

L14 =25H

L53 =05H
Lis=Ly=Ls=Lg=06H
Lys=Ljg=Lg=Lig=Ly=Lx= 04H
Li7=Ly=Lys=Ls=03H

L‘g = L45 =0.1H

Note that for all mutual inductances, L;; = L;;
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