The design of time-domain simulation tools: the computational engine approach

Jean Mahseredjian
Institut de Recherche d’Hydro-Québec (IREQ)
. 1800 Montée Ste-Julie
Varennes, Québec, Canada J3X 1S1

Summary: The design of large computer programs for
time-domain circuit simulation, such as the EMTP (Elec-
tromagnetic Transients Program), is traditionally based
on coding using a conventional computer language: For-
tran, C or Pascal. The programming language of the cur-
rently available EMTP version is FORTRAN-77. This
paper presents new design ideas suitable for the re-devel-
opment of such programs using high level tools. A tran-
“sient analysis numerical simulator is created connecting
an input processor to a separate set of solution blocks
programmed in the computational engine frame of
MATLARB.

Keywords: EMTP, MATLAB, time-domain network
solution, high level programming

1. INTRODUCTION

The conventional concept of a time-domain circuit
(power networks and electrical/electronic circuits) simu-
lator is simple: a large set of algebraic-differential equa-
tions is first transformed into a discrete algebraic
equivalent and then solved over the requested interval
[0,t_,,] . The actual solution is available only at dis-
crete time-points (0,115, 5, ..., tnax) Where afixed (as
is the case in the EMTP[1]) or variable time-step At; is
used. Time-domain simulation usually requires proper
initialization. Steady-state solution for a linear single fre-
quency system status is normally a part of a conventional
time-domain circuit simulator. Further sophistication is
estimation of steady-state conditions from a harmonic
steady-state module[2]. The calculation of some other ini-
tial conditions, specifically in control circuits, requires
user intervention or implementation of specialized algo-
rithms.

In a conventional simulator design, everything is
based on line-by-line coding. Every component is imple-
mented this way, as is the solution algorithm and any
details of the overall solution process. Moreover, old-
fashioned programming techniques inhibit modularity
and are geared towards memory conservation., This is the
case of the large EMTP code. The low level design meth-
odology explains the low renewal and enhancement rate
of large simulator codes. The closed architecture of these
codes makes them difficult to maintain and modify, it is
also prohibitive to experiment with modern algorithmic

Fernando Alvarado
University of Wisconsin-Madison
Electrical & Computer Engineering
1415 Johnson Drive, Madison, WI 53706, USA

ideas.

Many network solution and modelling methods are
simple to visualize and support mathematically, but their
translation into an actual large scale working code is com-
plex. Commonly used programming languages are ill-
suited to human abilities for dealing with complexity.
Software built using such languages is often inadequate.
Some other languages such as ADA and C++, provide
several powerful features for the formulation of appropri-
ate abstractions [3] for the desired application. But pro-
gramming is always easier if a specialized language is
already available for the creation of similar applications.
Large and specialized programs such as EMTP, should in
fact possess their own dedicated computational engine
where the programmer can build and compose with high
level constructs. Programming a new computational
engine from scratch is a major effort. There is also the
risk that the specialization of such an engine may become
less powerful for interconnecting applications. '

This paper proposes to use an already available and
widely used general purpose program as a computational
engine: MATLAB [4]. This paper presents the creation of
MATEMTP: a transient analysis program prototype in
MATLAB M-files. It is based on a new formulation of the
main system of network equations, shown to eliminate
several topological data resirictions and capable of han-
dling completely arbitrary switch interconnections, pro-
vided an otherwise consistent problem.

2. SOLUTION METHOD
2.a Basic principles

The problem formulation and solution must benefit
from the high level functionalities of MATLAB. The
recent implementation of sparse matrix manipulation
capabilities into MATLAB and the reliability of the built-
in solution methods for linear equations, stimulate algo-
rithmic ideas based on matrix computations.

MATEMTP uses matrices and vectors, as much as
possible, for coding and solving network equations,
closely following the underlying mathematics of network
theory. The core code operates by defining a larger and
more general matrix to represent network equations than

IPST °95 - Intemational Conference on Power Systems Transients
Lisbon, 3-7 September 1995

493

is customary. This matrix is described next.)
2.b Network equations and component models

The main system (core code) of network equations
must be defined before programming the individual com-
ponent models. The following sparse formulation is used
in MATEMTP:

t t
Yl’l vﬂ SB vn ln

= 1
Va Oy, Oygiliv,| = [V, (D

t I 0
s. OV‘S So S

Y, is the standard nxn nodal admittance matrix, Vg
is the NV, x nnode incidence matrix of voltage sources,
Sa is the nNngxn node incidence matrix of closed
switches, OV' isan nV,xnV, null marix, oVsS_ isan

nV, X ng null matrix, Sp is an Ngxng sparse binary
matrix used to nullify open switch currents, V, is the
vector of unknown node voltages, I\,s holds the unknown

voltage source currents, lg is for unknown switch

currents, |, holds the nodal current injections and Vg

stands for voltage sources. This system is used in both
steady-state and time-domain solutions. The node

incidence switch matrix S, is modified to avoid the

reformulation of Y, in a varying topology condition and
remains fixed in steady-state.

Equation (1) is less restrictive than the standard
EMTP nodal analysis and expands on modified nodal
analysis by including explicitly the switch equations.
Contrary to EMTP, MATEMTP can model voltage
sources not connected to ground, floating switch nodes
and branch to branch relations. All switch currents are
automatically calculated and the explicit switch matrix
S, usage simplifies the detection of illegal switch loops.

There are 4 basic model types: current source, voltage
source, ideal switch and branch. The goal is to insert
model equations into the main system (1).

The steady-state solution is a frequency domain solu-

tion. Its objective is to initialize the time-domain solution
when steady-state conditions exist before transient analy-
sis. MATEMTP can handle a simple fundamental fre-
quency initialization or the prediction of the actual
harmonic steady-state as proposed in [2]. Component
models must provide their frequency domain equations to

be inserted during the steady-state solution.

The time-domain solution is based on the discretiza-
tion of the component models. Although Euler Backward
and trapezoidal integration are programmed for the
default set of models, other integration methods are freely
used in individual model files, as long as compliance with
core code requests exists. In addition to handling discon-
tinuities [5][6], Euler Backward integration is useful for
startup from manual initial conditions where only capaci-
tor voltages and inductor currents can be defined.

3. THE MATEMTP CODE

The objective is to program MATEMTP using only
MATLAB M-files[4]. These files include several standard
MATLAB statements and may also refer to other M-files.
An M-file is an ASCII script or function file. Since these
files are run directly in the MATLAB environment and
there is no requested compilation stage, MATEMTP
inherits an open source code.)

In inexperienced hands, the large number of available
MATLAB building functions and constructs, cannot
inhibit the creation of an inefficient and cryptic program.

- Some experience is needed for programming solutions

with a minimal number of code lines and for minimal
CPU time. The key to minimal CPU time is the vectoriza-
tion of the solution algorithms.

"The design of MATEMTP avoids loops and if-then-
else statements and uses vectorized algorithms as much as
possible. The main program structure shown in Fig. 1-
relies on the inpuwt processor to interconnect the
MATEMTP M-files. The input processor is a C program
that can actually decode and validate standard EMTP data
files [1] and create the MATEMTP case.m file. This file is
a processed file of network data created from the external
case data format.

The model selector selects the models needed for
case.m and connects them to the main program. All mod-
els are programmed in separate M-files that simply obey
to a set of predefined core code requests. A typical
request for a branch model is “provide admittance
matrix” or “update history”. The creation of any new
model is as simple as programming a new M-file which
is automatically recognized and inserted into the appro-
priate code location by the model selector.

The organizer gathers the solution M-files according
to selected options and overall solution needs. It appears
that MATEMTP applies a data dependent interconnection
of individual code modules and avoids testing for selected
models and options and minimizes the number of code
initialization procedures.

IPST ’95 - Intemnational Conference on Power Systems Transients
Lisbon, 3-7 September 1995

494

Programming within a computational engine frame
such as MATLAB has several advantages. A major differ-
ence from conventional coding is the small number of
code lines needed to express an elaborate algorithm and
sparse matrix manipulations. The complete MATEMTP
(all M-files without component models) requires only 500
lines of code. It must be recalled that a large number of
simulation data manipulation and presentation functions
is also provided in MATLAB, in addition to graphical
user interface building blocks.

Computational engine: MATLAB)»

Main program:

Solution.algorithms

Steady-state / Initial
conditions

v

Time-domain loop

input

processor

Figure 1: MATEMTP main structure

Here is a valid sequence of files called in by the orga-
nizer (see Fig. 1) for solving a typical case case.m:
10 matemip.m: program startup and request for data
case .
20 case.m: the actual case file, any name can be used
30 start.m: initial setups for models, initial conditions,
initialization of the time-domain solution
40 timeloop.m: the time-domain loop for the simulation
interval .
The start.m script file simply initializes all variables to
zero (or manually supplied initial conditions) or provides -
automatic frequency'domain initialization for any subnet- -
work where active sources existat t<0 .

Appendix A shows a section of code called in from
start.m for linear harmonic initialization. In a similar
fashion, the script file timeloop.m calls stepl.m at each
time-point. Differences with steadyl.m are: the need to
account for switch position changes and the MATLAB
LU decomposition function is now used for solving (1).
There is no need to reapply LU when no switch position
change is detected.

Since all component models appear hidden to
MATEMTP, the model selector can only communicate *
through built-in generic function files (communication
files) for the 4 basic component model types: mcursou.m,
mvolsou.m, mbranchm and mswitchm. A single file

mglobal.m is used to transfer data from workspace to
model functions. Calling a MATLAB function is faster
and more modular than a script M-file.

The simple test circuit of Fig. 2 is used to demon-
strate some of the above outlined functionalities. The con-
tents of testliwh.m (this is now case.m) are listed in
Appendix B.

0.5Q

Figure 2: Test case testliwh.m

It appears that this test case is using RLC branch mod-
els, two ordinary switch models, a sinusoidal voltage
source model and two sinusoidal current source models.
The names of those model M-files are available in an
input processor library and that is why the model selector
sends the following communication files:
mglobal.m: (called in from matemtp.m)

gvsine; $sinusoidal voltage source data

gisine; $sinusoidal current source data

rlcglob; $RLC model data

swOglob; %6rdinary switch model data
mvolsou.m:

function mvolsou (ido)

vsine(ido); %sinusoidal voltage source

~ mcursou.m:

function hcursou(ido)

isine(ido); %sinusoidal current source
mbranch.m: '

function mbranch (ido)

rlcmod(ido); ~ $RLC model
mswitch.m:

function mswitch.m(ido)

sw0(ido); %ordinary switch model
As an example of model data connection file, here are the
contents of gvsine.m:
global Vadj Vsinein Vmag Vstart Vstop Vphi

Vw;
Another possibility would have been to let each model
handle its own data, by subdividing case.m into separate
model data M-files.

Any given model can perform a standardized number
of model tasks according to the ido parameter. Here is an
extract of code from ricmod.m when this model responds
to admittance matrix creation in steady-state and time-
domain for ido=2 and ido=5 respectively:

IPST 95 - International Conference on Power Systems Transients
Lisbon, 3-7 September 1995

495

if ido == 2 %add into ¥Yn for ss

Yn=Yn+RLCadj"'*sparse (1:nRLC,1:nRLC,

1./ (RLCR+jz* (W*RLCL - RLCC/w)))*RLCadj;
elseif ido == 5 %$Yn in time-step
GRLC-sparse(;:nRLC,l:nRLC,

1./ (RLCR+(2/Dt) .*RLCL + (Dt/2).*RLCC));
GHRLC=(2/Dt) . *RLCL+RLCR- (Dt./2) . *RLCC;
Yn=Yn+RLCadj'*GRLC*RLCadj;

end

Here is the code for ido=35 for a single phase transmission

line model:

Y¥n=¥n+ (Tadj>0) ' *sparse(1:nT,1:nT,
1.0/T2c) * (Tadj>0) ;

Yn=Yn+ (Tadj<0) ' *sparse(1:nT,1:nT,
1.0/T2Zc) * (Tadj<0) ;

, The switch status detection code (for ido=7) is a good
example of code sophistication:
p=pulse (Sclose, Sopen) ;
'inBand-(~p.*Sstatus).*(abs(IS)<Seps);
changedSigns=
(~p.*Sstatus) .* ((IS.*Slast)<=0);
newSstatus=
unitstep (p+ (~ (inBand+changedSigns)));
if max(abs (newSstatus-Sstatus))

reBuild=1;

Sactive=bkrtreel (newSstatus, Sadj,n,nS);
end;)
Sstatus=newSstatus;
Slast=IS;

4. TEST CASES
4.2 Casel

- The circuit diagram of this test case is shown in Fig. 2.
This test case is unfair for the EMTP, since the standard
EMTP cannot handle steady-state initialization with dif-
ferent source frequencies in the same subnetwork and
according to testliwh.m (see Appendix B) the harmonic
current sources ig; and is, are connected for t<0 .-

The EMTP found voltage waveform, shown in Fig. 3,
starts with wrong initial conditions (both current sources
settostartat t = 0) and will enter almost perfect steady-
state only after 8 seconds of simulation time. Since the
study is performed in steady-state conditions, the switch
closing times must be readjusted. EMTP uses Euler back-
ward [6][7] integration to eliminate the numerical oscilla-
tions caused by the startup of igy.

MATEMTP can solve this case directly through its
initialization algorithm of Appendix A. Fig. 4 shows that
MATEMTP is in harmonic steady-state at t = 0. The
superposed waveform is found from shifting the EMTP
solution backwards by 7.95 seconds. The differences are
almost imperceptible.

The eratio (defined as total MATEMTP elapsed exe-
cution time over EMTP execution time) of =1/3 is in
favor of MATEMTP because EMTP needs a much longer
simulation time.

150

8

w
Q

ge of node 4 (V)
¢ o

volta
8

_150 1 1 1 L J
o 10 20 30 a0
t (ms)

Figure 3: EMTP simulation, Case 1, wrong initial
conditions

PV —— =
s3 | steady-state

voltage of node 4 (V)
(-]
T

20 30 40
t (ms)

Figure 4: MATEMTP and shifted EMTP solutions,
Case 1

4.b Case2

When current sources ig; and igy in testliwh.m are
hypothetically set to operate at 60Hz, then (see Fig. 5)
both MATEMTP and EMTP can start in steady-state
immediately. Now the eratio of =2.5 is more indicative.
Considering that EMTP suffers from its large number of
always present options and models and has a large over-
head for its input and output operations, this number indi-
cates that MATEMTP is slow compared to a compiler
based code, but not that slow!

wn
w

Y

voltage of node 2 (V)
§ o

0
W
w

]
-]
(=]

o] 10 20 40

t (ms) 20

Figure 5: MATEMTP and EMTP solutions, Case 2

IPST *95 - International Conference on Power Systems Transients
Lisbon, 3-7 September 1995

496

4.c Case3

The circuit diagram of this case is shown in Fig. 6.
This case is used to pinpoint the MATEMTP algorithmic
advantages in handling switches. Typical applications are
in power electronics, power system control or model
logic.

All switches are initially open and according to shown
closing times, the closing of switch 3 creates a switch
loop. It is not easy for the EMTP code to handle such
loops and EMTP will actually halt the simulation at 6us
and print an error message. The detection of a switch loop
is simple in MATEMTP, since such a loop will create a
linearly dependent row in the switch matrix S, of equa-
tion (1). The loop is currently broken by preserving the
maximum number of nodes. Other criteria based on possi-
ble usage of switch current as a control variable, can be
easily implemented.

Another difficulty for EMTP algorithms are the float-
ing subnetworks created by the resistor and the node
interconnecting switches 1 and 2, before the closing of
appropriate switches. EMTP identifies such subnetworks
during its Gaussian elimination process and adds a large
resistor to ground for the existing zero pivot nodes.
MATEMTP simply relies on its computational engine LU
factorization (for sparse matrices) used for solving equa-
tion (1). It is true that the resistor creates an infinite condi-
tion submatrix in Y}, , but the L and U matrices of such a
submatrix exist and the forward backward substitution is
correctly applied for any otherwise consistent right hand
side. :

5%

Figure 6: Test case with a possible switch loop

5. DISCUSSION

The initial programming of MATEMTP applied

extreme modularity through a large number of script and -

function files. The input processor was only a simple file
format translator, all models were always present in the
code and a large number of logical statements was
required for data initialization and selection of appropri-
ate solution options. Such programming contributed to
the creation of an extremely slow program. Drastic per-

formance improvement came from the creation of the
ready-to-run structure of Fig. 1 in addition to replacing
most of the script M-files by function M-files and using a
single script M-file for repetitive core code operations
such as the time-step loop. Preallocating vectors in which
results are stored is also an important factor in the overall
MATEMTP speed. It is obvious that blind usage of
dynamic memory simplifies programming but places a
heavy burden on the MATLAB interpreter.

A detailed analysis of MATEMTP CPU usage in the
time-step loop for the typical case of Fig. 2, shows the
following disposition: less than 15% for LU factorization
and triangular solution, close to 60% for updating the
right hand side of equation (1) and the remaining is for
individual model updates. It appears that applying vector-
ized algebraic functions is time consuming. A promising
possibility is the replacement of such functions by com-
piled C language MEX-files [8], but this should be
applied only at the last stage of programming and contra-
dicts the high level programming objective, although the
core code remains unchanged. And what if an automatic
C-code generator was available for any MATLAB M-file?
Automatic creation of ready to link object files would be
sufficient. ' :

'CONCLUSIONS

This paper presented the programming of a time-
domain network simulator in the computational engine

frame of MATLAB: MATEMTP. It is based on the con-
.cept of an external input processor that gathers

MATEMTP solution and model M-files according to the
simulated network case.

Although the computational speed is found to be
acceptable for the tested cases, MATEMTP being an
interpreter, remains slower than a standard compiler
based program. Several speed improvement methods
have been proposed and the performance of such methods
must be tested in a large network case. ’

MATEMTP has been also implicitly used for testing a
new and less restrictive formulation of main network
equations.

MATEMTP is a powerful prototyping tool suitable for
the standard EMTP redevelopment phase.

APPENDIX A

MATEMTP linear initialization module: steadyl.m

The following is a listing of steadyl.m:
tO=cputime;
Wall=[];

mcursou(5); %put all current source ws in Wall

IPST ’95 - Intemational Conference on Power Systems Transients
Lisbon, 3-7 September 1995

497

mvolsou(5); %$put all voltage source ws in Wall
Wall=sort (Wall);
Vn_init=zeros(n,1l); %initialize n node voltages
IVs=zeros(nVs,1); $initialize IVs
IS=zeros(ns,1); $initialize IS
nfreq=size(Wall,1l); %the number of ws to do
ifreq=1;
wdone={];
while ifreq <= nfreq
w=Wall (ifreq);
if w ~= wdone
steadyl; %see code below
wdone=w;
mbranch(3); %accumulate steady-state at t=0
end
ifreq=ifreq+l;
end
Vn=Vn_init; $%$solution at t=0
sscputime=sscputime+cputime-t0;

The following lines are from steadyl.m :

$This is the ss module step for the frequency w
Yn=sparse(n,n); $%$Build ¥Yn
mbranch(2); %contribution to ¥Yn by branch models
Ytmp={Y¥n Vadj'; Vadj sparse(nVs,nVs)];
%
if nS ~= 0 %insert active switches
Stmp=sparse{l:nS,1:nS,Sactive)*
[Sadj sparse(nS,nVs)];
Sz =sparse(l:nS,1l:nS,~Sactive);
Yaug=[Ytmp Stmp'; Stmp Sz];
else
Yaug=Ytmp;
end;
% Contruct the steady state RHS
In=zeros(n,l1); %n is the number of nodes
mcursou(3); %$current sources in In for w o
mvolsou(3); %voltage sources in Vs for w
Itmp=[In; Vs];
Iaug=[Itmp; zeros(nS,1)]; %account for switches
%
Vaug=Yaug\Iaug; $compute unknown phasors
Vn=Vaug(1l:n); % Nodal phasor voltages
Vn_init=real(Vn)+Vn_init; %at t=0 accumulate
if nVs ~= 0
IVs=real(Vaug(n+l:n+nVs))+IVs;
end
if nS ~= 0
IS=real (Vaug (n+nVs+1l:n+nVs+nS)) +IS;
Slast=IS;
end

APPENDIX B

MATEMTP data file for the test case of Fig. 2

The following is a listing of testliwh.m :

Dt=50e-06;

tmax=1000; $this is 50ms

n=6; %$number of nodes

BUS=['BUS1 ';'BUS12 ';'BUS13L';'BUS13S‘';
'BUS1Ss ';'SRC ';1; %$bus names

]

$RLC model

RLCadj=sparse (8, 6); %node incidence
RLCadj(1,6)=1; RLCadj(l,1)=-1;
RLCadj(2,1)=1; RLCadj(2,2)=-1;
RLCadj(3,1)=1; RLCadj(4,2)=1;

RLCadj(5,2)=1; RLCadj(5,4)=-1;

RLCadj(6,3)=1; RLCadj(7,2)=1; RLCadj(7,5)=-1;
RLCadj(8,3)=1;

RLCout=sparse(8,1);

RLCout (5)=1; %current output request
RLCR=[0;0.05;0;0;0;22.61;0.5;0;];
RLCL=(0.006;0.002;0;0;0.006;0.01972;0;0;1;
RLCC=[0;0;8e-07;8e-07; 0;0;0; 38e-06];

%

$Sine current source model
Isineadj=sparse (2, 6);

Isineadj(1,4)=1; Isineadj(2,1)=1;
Imagn={1.001000; 0.10000;];

Iphi={10.000000; 5.000000;];

Istart=[-1.0; -1.0;]; Istop=[Inf; Inf; };
Iw=2*pi*[180.000000; 360.000000;];

%

$Ordinary switch model, allow open at 0 crossing
Sadj=sparse(2,6);

Sadj(1,3)=-1; sadj(1,4)=1; sadj(2,3)=-1;
Sadj(2,5)=1;

Sclose=[17.E-3; 22.E-3; 1;

Seps=[0; 0;]; Sopen=[Inf; Inf;]; %never open
%

%Sine voltage source model

vVadj=sparse (1, 6);

Vadj(l,6)=1; Vsinein=[1;]; %row number in Vs
Vmag={56.340000;];

Vphi=(0.000000;]; Vstart=[-1.000000; };
Vstop=[Inf;]; Vw=2*pi*[60.000000; };

REFERENCES

[1] Electric Power Research Institute, EMTP Develop-
ment Coordination Group, EPRI EL-6412-L: Electro-
magnetic Transients Program Rule Book, Version 2

[2] X. Lombard, J. Mahseredjian, S. Lefebvre and C.
Kieny: Implementation of a new harmonic initializa-
tion method in the EMTP. IEEE Trans. on Power Sys-
tems, Summer Meeting 94, paper 94 SM 438-2
PWRD : ‘

[3] G. Bray and D. Pokrass: Understanding Ada, A Soft-
ware Engineering Approach. John Wiley & Sons,
1985 '

[4] MATLAB, High-Performance Numeric Computa-

tion and Visualization Software. The MathWorks,
Inc. MATLAB User’s guide, August 1992

[5] B. Kullicke: Simulation program Netomac, Differ-
ence conductance method for continuous and discon-
tinuous systems. Siemens Research and Development
Reports, Vol. 10, pp. 299-302, 1981, no. 5

[6] J. R. Marti and J. Lin: Suppression of numerical
oscillations in the EMTP. IEEE Trans. on Power Sys-

. tems, Vol. 4, No. 2, 1989, pp. 739-747

[7} J. Mahseredjian: The EMTP SUN and CRAY UNIX
versions. Rapport IREQ-93-065, March 1993,
Hydro-Québec

[8] MATLAB, .High-Performance Numeric Computa-
tion and Visualization Software. The MathWorks,
Inc. External Interface guide, January 1993

IPST °95 - International Conference on Power Systems Transients

Lisbon, 3-7 September 1995

498

