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ABSTRACT

A method to exploit latency in power electric network
transient simulations is proposed. The method relative accu-
racy and stability are explored. The network is segmented
into areas which have different time responses. Latency is
exploited in the resulting set of sub-networks: each of these is
simulated with a possibly different integration step related to
the sub-network time response characteristics.

Keywords: Real-time, simulation, EMTP, latency, multi-
step rules.

1. INTRODUCTION

The use of variable-size time steps is an attractive con-

cept in the simulation of transient phenomena. In prin-
ciple, using larger time steps when the phenomenon slows
down and smaller time steps when the phenomenon speeds
up, computational savings can be achieved without sacri-
ficing accuracy. This is the approach used by the well-

" known program SPICE [8]. The problem with this ap-
proach is how to guess, in advance, the appropriate time
step size to be used for the yet unknown solution at the
next time step. In our experience, in many instances these
algorithms can make the wrong guess with the result of
excessive time wasted or accuracy and stability problems.
A better alternative to dynamically adjusted time step sizes
is probably the concept of sub-circuit latency, that is to
solve each sub-circuit with a Az that is adequate to the
sub-circuit’s natural time constant. The application of this
concept in connection with the solution technique in the
electromagnetic transients program EMTP is discussed in
this paper.
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Figure 1. Topological Segmentation.

To simulate a network in the Electromagnetic Transient
Program, EMTP, Eq. (1) has to be solved at each time
step [3]:

[GI[v] = [h] - [Bl[ve], 1
where [G] is the nodal admittance matrix, [v] the node
voltages, [h] the node injected currents, and [v;] the inde-
pendent voltage sources.

Convenient node reordering techniques can convert the
network nodal admittance matrix [G] of Eq. (1) into a
block-diagonal one, Fig. 1. The resulting non-zero blocks
in [G] correspond to quasi-decoupled regions in the net-
work. An example of this approach is to use topological
segmentation [1], provided by the transmission links.
After this blocking procedure Eq. (1) becomes a separate
set of equations, one equation for each decoupled segmem,
see Fig. 1.

Some of the resulting sub-networks, or areas, may have
faster time response than others. In the traditional unique
integration step approach, the fastest area imposes the in-
tegration step to be used by all the other areas in the sys-
tem. If the system is solved using a different integration
step for each area (as suggested, for example, in [6]), and
the integration step is proportional to the corresponding
dominant eigenvalue of the state space matrix of the sub-
area, significant savings in computation time can be ob-
tained, as illustrated in the next paragraph.

The following example is considered as a visualization
example. After triangularization, the solution of a system
with 1200 nodes would require approxunately 1.44 million
long floating point operations (i.e. multiplications and
divisions). It can be estimated that the EMTP’s sparsity
techniques reduce this to some 35000 long flops. If that
system can be broken down into 200 decoupled areas of six
nodes each, the solution will need 200-62 =7200 long
flops. If one assumes, for example, that of those 200 areas,
100 of them are four times slower than the fastest one, fifty
are ten times slower, 25 are 20 times slower, 25 are 25
times slower, and latency is exploited as suggested above,
the solution would only need an average of

62(l+-§+%+f—g+%’i)=1197

long floating point operations.
Before committing the real-time simulator to even such a
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promising method, the procedure’s accuracy and stability
must be revised. .

2. STABILITY OF THE MULTI-STEP RULE

Stability of the multi-step integration rule is investigated
through its behaviour in the solution in the continuous
time domain (CTD) of a circuit with integration
(capacitor), differentiation (inductor) , and two areas with
different characteristic eigenvalues; see Fig. 2.

Figure 2. Simple RLC circuit with two areas.

Two areas with different time responses can be identified

in the test case; namely, the RL or area A, and the RC or .

area B. Area B is ten times slower than area A. Integration
step relative values have been chosen in accordance with
each area characteristic time response:

Ata = Atfag =50us (1a)

Atp = Atgon =200ps (1b)

Of the different possible approaches to consider the

latency of area B, the simplest has been used in this study,

ie. to freeze B’s associated values between updating
cycles; see Fig. 3. ' '
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Figure 3. Freezing the latent area values.

The test case in Fig. 2, once discretized, becomes the cir-
“cuit in Fig. 4, where time-areas have been separated by a
dotted line. At each solution step voltages at nodes 1 and 2
(V,, V,) are solved for depending on whether the slow area
1s latent or not.
When the slow area is not latent, the associated subne-
twork can be solved by Eq. (2).
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Figure 4. Discretized circuit for test case.
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When the slow sub-network is dormant:
vi=An(hr+g1vs) +Apthc~hr). 3)
History current sources are updated according to:
he() =2gcve(t—At)—he(t—Ar) (4a)
he(t)==2gLvi(t— A+ hi(t - A2) (4b)
Where:
g1=% g2=3 - (40

A unitary impulse sequence is then applied as voitage
source, i.e.:

vi0l=1, vin] =0 Vn=#0. 4)

The input current sequence obtained, i,[n], is the impulse
response of the multi-step filter, see Fig. S. The accumu-
lated sequence is bounded; i.e.:

b tuln] < B < oo, (5)
n=0

This means that the multi-step filter is stable in the BIBO

‘'sense [5].

One can go one step further, and find an approximate

input current (mA/10)
N

0 0.5 1 1.5
time (milisec)

Figure 5. Impulse response of the multi-step rule.
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Input current (mA/10)
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Figure 6. Superposition of impulse responses for the multi-step filter
(solid line) and its Prony approximation.

transfer function that matches the impulse response in
Fig.5 with the Prony procedure [7]. The Z-domain
transfer function obtained is:
HQ) = I(z) Z k(z+1)(z—0.9845)
Wz) (z—-0.9836)(z—0.8192)°
where k is a constant.

The match of the impulse response of this transfer func-
tion and the one in Fig. 5 can be observed in Fig. 6, where
the impulse response of H(z) in Eq. (7) is represented by
X'’s superimposed on the curve in Fig. 5.

The filter is stable indeed as all its singularities are with-
in the unitary circle, ‘but it is critically stable [2] (zero
at -1) when excited by a current source. This suggests that
some adjustment like the CDA in [4] may be necessary
across discontinuities.

)

3. ACCURACY OF THE MULTI-STEP RuLE

An integration rule performs its task with decreasing
accuracy as the frequency of the signal under process ap-
proaches the Nyquist frequency. To evaluate the multi-step
rule’s accuracy, its frequency response is compared with
that of the single-step rule.

The circuit used (integrator and differentiator) is shown
in Figs. 2 and 4. This probe circuit has two time areas, as
mentioned in the previous sections.

Three cases are reviewed for the frequency response
characteristics, namely:

1) Area A solved with Az =50us, and arca B solved with
At =200 ps. Multi-step rule,

2) Both areas solved with Az = 50 ps. Single-step rule with
fastest integration step.
3) Both areas solved with Ar=200 ps. Single-step rule
with slowest integration step.
The relative accuracy is monitored as seen through a
driving port into the fastest area, that of the source in
Figs. 2 and 4.
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Figure 7. Frequency response of the integration rules for case (1)—dotted
line—, case (2)—solid line—, and case (3) —solid line—.

a) Determining the Frequency Response

For single-step integration rules [2], it is convenient to
obtain the necessary transfer function, H(z), in the Z-trans-.
form domain as seen by the rule, then, after substituting

7 =elost, ®)
the frequency response plots in magnitude IH(z)l and
angle, angle(H(z)), can be drawn.

For hybrid rules such as the multi-step filter under scru-
tiny, a more general method can be used, as seen below.

The sampling rate or rates are set to convenient values,
and kept constant during all the subsequent steps in order
to anchor the Nyquist’s frequency or frequencies.

Then, for a set of frequencies between zero and the
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Figure 8. Detail of the characteristic frequency response for low fre-
quencies of the integration rules for case (1)—dotted line—, case
. (2)—solid line—, and case (3) —solid line—.
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Nyquist frequency of the fastest-area, f: ]

1) Apply a cosine-wave voltage source with a frequency f,
as indicated in Figs. 2 and 4, ’

v(t) = cos(2nf- 1). )]

2) Determine the discretized input current using the rule,
i (D), over a significant number of cycles of the source’s
frequency, once the initial transients have died out.

3) Put the samples of i(7) obtained in (2), i.e. i (f), through
a low pass filter according to the sampling rate used in
the fastest area (the one with the driving port), Az, to re-
construct a full cycle of i(?),

‘ . <> - sin [(W/AD)(1— k - AD)]
= k- At)
0 =2 iak - A= T A

4) From the reconstructed cycle of the input current, ob-

tained in (3), determine the current’s amplitude, I, and
phase shift, ¢,, with respect to the source signal.

5) The approximate rule-distorted driving point impedance
has the magnitude IZ)=1/[; and the phase shift is
02=-9: _

6) Determine the exact driving point impedance at that
frequency from the explicit phasor expression:

10)

|1Z:(@)| £0x = R(®) +jX(®) (11a)
R

R(®)=R; + ——=— 11b

(@) =R, T (@R.O)? (11b)
RiC '

X(@)=0|L- —*— 11
(@) [ 1+(mR2€)2] (110)
7) The amplitude error, in p.u., at that frequenéy is:
Z,
em=1- 12a
M Z (12a)

and the phase error (in units) is:
€ =60z, — ¢« (12b)

b) Comparing the Frequency Responses

The frequency response characteristics obtained for cases
1, 2, and 3, described above, are shown in Fig. 7, up to the
- Nyquist frequency corresponding to the fastest area’s in-
tegration step, which is the critical area. On this graphic,
the response for the multi-step rule coincides with that of
the single-step rule comesponding to the smallest

= =

Figure 9. Simple system with a transmission link.
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Figure 10. Discretized form of system in Fig. 9.

integration step. Figure 8 shows an amplified view of the
same graphics for very low frequencies, even at this level
of magnification it can be seen that the multi-step rule is
not much less accurate than the single-step rule.

For higher frequencies the difference in accuracy be-
tween the multi-step and the single-step rule is of no
consequence..

The single-step simulation with the larger integration
step (the one corresponding to the slowest area) provided
the frequency response curve shown in Figs. 7 and 8 with
the label 3. It is included only for reference, but it shows
that its distortion is significantly worse than that of the
multi-step rule, and that it fails to include frequencies still
present in the multi-step rule output and possibly of im-
portance for the faster area.

4. SEGMENTATION AND LATENCY

Even if the multi-step integration rule is as stable and
accurate as seen above, to incorporate it into the real-time
simulator requires an answer to the question of how to
break the network into areas suitable to our purpose.

The segmentation scheme that proved successful in the -
real-time simulator described in [1] offers a convenient
arena to exploit latency by this multi-step approach.

In that topological segmentation, see Fig. 1, each trans-
mission link sections the network into areas. For example,
the system shown in Fig. 9, once discretized becomes that
in Fig. 10. The decoupling effect introduced by the trans-
mission link is evident, and the creation of two areas gives
us the possibility to exploit latency.

The next step is to obtain those areas’ time responses.
While in coupled network equations, like the ones corre-
sponding to the circuit in Figs. 2 and 4, to break the net-
work into areas is rather artificial, topological -
segmentation produces clean-cut islands.

If each of those islands can be described in the state-
space domain by an equation of the form

[x] =411+ [BIDY), (13)

the eigenvalues of matrix [A] determiné directly the
time-response characteristic of that island.
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5. CONCLUSIONS

Improved performance for a real-time simulator has been
proposed by the exploitation of the network inherent
latency. Latency is taken advantage of by a multi-step in-
tegration scheme.

The topological network segmentation scheme provided
by transmission links is reviewed as an ideal case for the
application of a multi-step integration method.

Work is in progress to find general techniques that may
allow the further breaking down of compact subnetworks
(networks with no transmission like links) into subareas of
different latency.

The analysis presented in this paper shows that multi-
latency integration schemes are numerically stable and
their application can result in considerable savings in sol-
ution time with practically no sacrifice in solution
accuracy. ‘ '
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