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Abstract

Power systems are being operated closer to their limits than ever before. Faults
on the power system have the potential to push the system operation beyond
these limits and cause a system wide collapse. However, when the limits
are exceeded, it is the duty of protection relays to ensure the system does
not collapse. The detection of faults plays an important role in the correct
operation of digital protection relays and the stability of the system. Most
fault detection methods use variations of electrical quantities as the detection
criteria but do not fully utilise this information. This paper presents an adaptive
statistical estimator for the basis of detection and classification of power system
faults. Results from simulation work on an Electromagnetic Transient Program
(EMTP) are presented and the performance of this method is compared to the
more traditional fault detection algorithms.

1 INTRODUCTION

<

Power system high voltage equipment is protected from po-
tential damaging transients by protective relays. Analogue re-
laying devices have performed reliably for many years, how-
ever, they are being gradually replaced by digital relays.

Digital protection relays use a variety of different techniques
to extract the power system frequency quantities of voltage and
current on which to base a relaying decision [1]. However,
in order to operate correctly in the minimum time, some type
of fault detection and classification algorithm usually precedes
this signal processing. Fig. 1 shows the major components that
are included in a modern digital relaying subsystem. The fault
detection (FD) algorithm is contained within the digital signal
processor (DSP).

Traditional detection methods such as the sample-by-sample
(SBS) and cycle-by-cycle (CBC) techniques require a detection
threshold setting. This threshold must be low enough to detect
faults but also high enough to avoid false detections; this usu-
ally results in setting compromises. These methods rely only
on magnitude information and may incorrectly classify normal
system events as faults, for example, the transients accompa-
nying transformer tap changes and during motor starting. In
particular, the SBS technique may have problems dealing with
some transient conditions, for example, line energisation and
circuit breaker reclosing. Furthermore, the CBC technique al-
lows each transient to ripple through its data buffer, in effect,
corrupting the data used to discriminate for faults in the present
and the next few cycles. Other more sophisticated techniques,
such as those based upon Kalman filtering' may require up to
fourteen separate Kalman filters all operating in real-time and
in parallel [2], [3], [4]. These techniques require an enormous
amount of processing power for such a small portion of the

relaying task which may result in reduced sampling rates de- -

grading their performance. Moreover, the initial covariances
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Fig. 1. A Block Diagram of Digital Protection Relaying System Components

determine the speed of solution, that is, only from extensive
knowledge of the system noise statistics can maximum benefits
be extracted from these techniques and this is often not readily
available. ,

Several other techniques based on the magnitude change in
the noise statistics from Kalman filters during the occurrence
of faults have been proposed [5], [6). The latter uses a fault
detection method based upon Kalman filtering with hypothesis
testing by testing for a sudden jump in the noise statistics. Once
again the detection sensitivity is dependent upon the initial
covariances.

Another similar technique is based on a non-linear adaptive
fault detection filter for on-line fault detection and isolation of
non-linear systems which combines an extended Kalman filter
with a weighted sum-squared residual method to achieve fast
fault-detection for non-linear systems [7]. .

This paper discusses some fundamental issues involved in
the detection of faults on a power system, develops an adaptive
median operator fault detector for the real-time implementa-
tion in a digital protective relay and presents the results of its
performance against existing detection methodology.

2 PROTECTION SYSTEM COMPONENTS

Although the detection of faults from a digital protection re-
lay occurs in software, there are many analogue components
preceding this which have a major influence on its accuracy.
Therefore, in order to accurately model a protection relay on a
computer, it is important that accurate models of all componen-
try affecting its outcome must also be included. The following
section discusses some of the issues involved when simulating a
power system protection relay on a computer in order to obtain
results similar to those possible from field testing.

2.1 Input Transducers

Current transformers (CTs) and voltage transformers (VTs)
are essential elements in the detection of faults on modern
power systems. The primary voltage and current guantities

from the power system must be transformed, in both magnitude
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and phase, from many thousands of amperes or volts to values
which can be manipulated by digital components for relay pro-
tection purposes. In reality, this transformation never produces
identical results and errors in both magnitude and phase will
eventuate. Although protection CTs usually will accurately re-
produce harmonics up to the fifteenth, saturation can produce
significant current error [8]. CCVTs may also produce sig-
nificant errors for near faults when the faulted phase voltage
undergoes a sudden change of a relatively large magnitude and
may produce undesired subsidence transients [9].

2.2 Analogue Filtering

Analogue filters serve a dual purpose in most modern digi-
tal protective relaying schemes, attenuating harmonic content
and eliminating aliasing effects from the sampling process. The
non-fundamental‘_frequency components of the voltage and cur-
rent waveforms provide useful fault information for the relay.
Filtering these frequencies before processing by a FD routine
reduces the effectiveness of most FD techniques. Fig. 2 shows
the difficulty a FD technique may have when strict criteria is
placed on the analogue filter to reduce harmonics. In this paper,

Fig. 2. The Effect of Strict Analogue Filtering Criteria on the Damping of
Transients : - :

the analogue filter is designed specifically to perform only one
function, anti-aliasing. The cut-off frequency is such that many
of the transients accompanying faults are not damped, thereby
providing additional information for fault detection. Harmonic
filtering can be performed using digital filters at a later stage.
This also reduces the amount of noise injected by the analogue
filter.

2.3 Digital Conversion

An Analogue-to-Digital (A/D) converter is required to con-
vert the analogue signals of voltage and current into digital
numbers for signal processing. Most digital converters only
provide a limited range of numbers with which to represent
any input quantity. Furthermore, the A/D converter must track
accurately the extremely wide dynamic range encompassing
normal and fault values that may be present. If the maximum
dynamic range is not-used to represent the voltage and current

quantities, a dramatic reduction in numerical accuracy occurs.
For example, a 16-bit A/D converter may be required to acquire
data from a feeder rated at 1200 amperes and also accurately
convert data for fault currents on this feeder that may be as high
as 20,000 amperes. If dynamic conversion is not used, a severe
loss in data accuracy results which should be represented in any
A/D converter model.

2.4 Signal Extraction

Most commercially available digital protection relays have
decision logic based upon the extraction of the fundamental
power system components using Fourier transform techniques.
Today, digital signal processors have enough processing power
to solve such functions in real-time. The fast Fourier transform
(FFT) is a highly efficient procedure for computing the the dis-
crete Fourier transform (DFT) and is usually performed upon
the voltage and current samples derived from voltage and cur-
rent transformers. The FFT correlates these signals with sine
and cosine functions over a finite interval and therefore has a
finite impulse response (FIR).

Although FIR filters operate correctly during most situations,
large errors may be induced when the input signal changes
rapidly due to faults. Once a fault occurs, the voltage and cur-
rent phasors rapidly change from pre-fault to post-fault values.
During these conditions, both quantities will be included in the
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Fig. 3. The Transition From Pre-Fault to Post-Fault Steady-State Waveforms

FFT summation as shown in Fig. 3. Due to the FIR of the FFT,
the output may contain large errors and the damping inherent
in this technique may result in a rather slow convergence to an
accurate phasor estimate when both transients and steady state
quantities are included in the summation [10]. Therefore, a cor-
rect relaying decision may be difficult to achieve quickly when
both pre-fault and post-fault data are included in the decision
window due to these rapid changes.

In order to obtain an accurate estimate of voltage and cur-
rent phasors in the minimum time, only post-fault quantities
should be included in the FFT summation. Other estimation
techniques, such as those based upon Kalman filtering, also
require a trigger to identify the start of a fault. It is, therefore,

very important to detect the instant of fault inception and to
include only the post-fault guantities in the decision logic for

TRADEL QL3 116 POST-lault quaniilics 1n e GeCision 10giC ior a

rapid relay response.

IPST ’95 - International Conference on Power Systems Transients

Lisbon, 3-7 September 1995

289




3 FAULT DETECTION

The following section discusses two of the more traditional
methods available for the detection of faults. Voltage sam-
ples, current samples or both may be used as the criterion for
detecting faults.

3.1 Sample-by-fS'ample Check

A sample-by-sample fault checking routine compares the
value of the present sample with that of the previous sample.
If the difference between adjacent samples is outside a preset
range, a transient disturbance is determined to have occurred
and a counter is increased. The value added to this counter
depends on the size of this difference. If this difference is small,
the counter is incremented by a number proportional to the
difference, that is, the counter is incremented by a small number
for small differences. When the counter has reached a threshold
value, a fault is determined to have occurred. This method of
accumulating confidence in the decision has been widely used
in applications where the output contains uncertainty. Fig. 4
illustrates a SBS method.
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Fig. 4. A Sample-by-Sample Fault Detection Method

3.2 Cycle-by-Cycle Check

This method compares the present sample with the corre-
sponding sample from the previous power system period and
determines if the discrepancy existing between the two is suf-
ficient to indicate the occurrence of a transient disturbance.
Once again an accumulating confidence decision is made be-
fore a final decision is made. A CBC method is illustrated in
Fig. 5. The major problem with this method is that each sample
is used for discrimination one cycle later, even the post-fault
samples. This results in corrupted samples being used for fault
discrimination.

3.3 Discrimination

One of the most difficult tasks required of a fault detection
algorithm is to discriminate between faults and normal system
events. This discrimination determines the balance between
security and dependability. During a fault the voltage and
current waveforms will usually deviate from normal system

operation. Most FD algorithms will prefer to use either one of -

these waveforms to extract information for their discrimination.

To decrease the level of false detection both current and voltage
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Fig. 5. A Cycle-by-Cycle Fault Detection Method

information can be utilised. Also, the probability of false fault
detections is minimised by using an accumulating confidence
decision, that is, to gain confidence in a fault detection decision,
each fault is confirmed a number of times.

4 FAULT INDUCED TRANSIENT STUDIES

The magnitude of the fault noise is affected by many factors
such as fault location, fault resistance, fault inception angle
and the source impedance ratios. In order to provide a robust
FD method, a thorough understanding of the spectra of fault-
induced transients is required.

There have been a number of studies conducted to investigate
the properties of fault-induced transients [11], [12], [13], [14].
These studies have found that the mean value of the unfaulted
phase quantities are approximately equal to their pre-fault phase
values and the mean value of the current in the faulted phase
quantities is approximately equal to the square root of twice the
variance. Also, the mean value of the voltage in the faulted
phase(s) was found to be, on average, less than 75% of that of
the healthy phase(s).

These studies also concluded that for a given system con-
figuration, the noise spectrum is independent of the type or
location of the fault and that the dominant noise spectrum is
centered around 240 Hz, irrespective of system configuration.

 Furthermore, all of the analogue components which precede the
digital relay were found to produce their own noise and usually
modify the fault waveforms in someway. A FD algorithm must
be able to use these observations to provide a reliable detection
methodology.

5 THE MEDIAN OPERATOR

The median operator uses the statistical information derived
from sampled power system waveforms to discriminate between
normal system events and faults. This operator is based on two
filters commonly used in digital signal processing, the median
and mean filters [15]. This section describes the operator.

5.1 The Median Filter

"The median filter is a non-linear filter widely used in image
processing applications because of its excellent noise rejection
properties and its ability to preserve discontinuities. The me-
dian value of a set of sampled numbers is defined as the middle

e & 3L VL S&

value after numerical sorting. The running medxan can be main-
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tained by discarding the oldest sample and inserting the newest
sample into an already sorted list before extracting the median
value. The performance of the filter is determined by the set size
and the sampling rate, both of which are usually fixed a-priori.

5.2 The Mean Filter

The mean filter is merely an averaging or smoothing type
filter commonly used to track the average of a process. This
type of filter is primarily used to stabilise the output when
there is uncertainty in the input quantities. The mean of a
set of sampled numbers is defined as the sum total over the
set size. The running mean can maintained by subtracting the
oldest sample from, and adding the newest sample to a running
summation, and extracting the mean value. The performance
of this filter is also determined by the set size and the sampling
rate.

5.3 The Algorithm

The median operator uses the statistical quantities of mean
and median to estimate the mode of an incoming signal in order
to discriminate between normal system events and faults. The
mode of a probability density function p(z) is defined as the
value of z where the function p(z) is a maximum. Estimates of
the mode must be used since there is no direct method available
for its calculation. The most frequently used parameters for
estimating the mode are the median and mean statistics [15].

Transients can be detected in a signal by monitoring the
changes in the probability density function of the signal. These
changes provide an good indication of the signal stationarity.
The running mean and median estimates also provide a good es-
timate of the signal stationarity. Therefore, these two statistics
can provide a method for detecting transient events.

The distance between these two estimates will provide a
method for discriminating between faulted and unfaulted con-
ditions. The type of transients contained in the signal will
determine the distance between these two estimates since the
median is a more robust estimate of the mode than the mean. In
mathematical terms this process is described in Eqn. 1, where
e (k) represents the absolute distance between the two esti-
mates.

eL(k) = jmedian [z(k), L] — mean [z(k), L] (1)

where z(k) is the value of sample k and L is the length of the
data window.

Median estimates using long data windows are biassed when
transients are included in the window, the length of data window
equalling the duration for the biassed estimates. For example,
the values of the transient will migrate toward the extremes of
the data window after sorting due to their departure from steady
state values. The median value will therefore be biassed during
these times. An unbiased median value will only appear at
the output if the transient occupies more than 50% of the data
window. Therefore, short data windows provide better response
during the occurrence of transients.

Usually the length of the data window is fixed a-priori re-
sulting in a compromise in filter performance. However, it is
possible to control the size of the data window and therefore
the size of the transients passed through the filter.

5.4  The Adaptive Algorithm

To improve the performance of this detection technique, a
method of controlling the data window length is required. This
is primarily to ensure that the minimum data window length is
used during transients but it also allows unwanted transients to
be filtered out by choosing a larger window.

As each transient event reaches the data window, the differ-
ence signal ez (k), will tend to increase as the front of the data
window reaches the transient, grow until the middle point of the
window is passed, then decrease. Therefore, to adjust the size
of the data window one needs to know whether the difference is
either increasing or decreasing, a differential operator wy (k),
can be used for this purpose. This operation can be performed
by subtracting the present sample difference from that of the
previous sample,

wr(k) =er(k) —er(k—1). 2

A block diagram of the adaptive median operator is shown in
Fig. 6. The feedback loop uses the difference | o |, differential
operator V(o) and its sign, sgn(o) to adjust the window length.

Mcd'ilan y(k)

z(k)

‘ e(k)

Mean . lof
4

V(c)'
]

Adjust|_w(k)
indow]

sgn(o)

Fig. 6. Adaptive Median Filter Implementation [15)

6 DETECTION CRITERIA

A fault detection algorithm must discriminate between faults
and normal system events. Most FD algorithms achieve this

_ by including some kind of accumulating confidence decision

(ACD) algorithm, that is, ensuring a correct decision is made
by confirming the fault condition a number of times. An ACD
method is necessary for both the SBS and the CBC methods of
detection to ensure they do not produce false detections. The
above algorithm, however, does not require an ACD algorithm
as it incorporates a proven method for discrimination into the
FD method. This property is illustrated in the next section.

7 ALGORITHM ASSESSMENT

To verify the ability of this algorithm to correctly detect
faults, several AC systems were modelled on an EMTP [16].
The object of these studies were to demonstrate the problems
related to traditional fault detection techniques and to illustrate
the potential of the adaptive statistical method described in this
paper. The second aim was to demonstrate the robustness of this
method through extensive testing on the widest possible range
of system conditions and system parameters that may occur in
modern power systems. The results presented here focus on the
last of these objectives.
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The following figures are taken from fault studies of a 230
kV transmission network - a single phase fault occurs at sample

number 1000, circuit breaker operation occurs at sample 1225.

i 1
1300 1400

1200
Sample Number

A sampling rate of 4 kHz was used to produce the following

figures, however, similar results have been obtained from lower

sampling rates.

Fig. 7 shows the result of processing samples

1500

1100

Fig. 9. Filter Differences Based on the Median Operator Algorithm

immediately following the end of this disturbance. This is in

contrast to that of the CBC output. Also, this method reduces

the amount of background noise that is superimposed on the

SBS output.

Fig. 10 shows the result of processing samples

Fig. 7. Sample Differences Based on a Sample-by-Sample Algorithm

Sampie Number

Fig. 10. The Output From a Sample-by-Sample Fault Detector After an ACD

Fig. 8. Sample Differences Based on a Cycle-by-Cycle Algorithm

Sampile Number

Fig. 11. The Output From a Cycle-by-Cycle Fault Detector After an ACD

operator difference output registers the
fault as significant while circuit breaker action receives minor

attention. Also observe that the length

€

of the faulted waveform through a SBS difference algorithm
while Fig. 8 shows the output from a CBC sample difference

Fig. 7 displays the significant amount of background noise
associated with the sample differences obtained from the SBS
technique and Fig. 8 clearly illustrates the propagation of faulted
samples affecting the output for the future samples. Also, note

algorithm. These figures show the presence of transients due
to the fault and circuit breaker operation but also contain some

undesirable effects.
that in Fig. 8 the length of samples affected by circuit breaker

action is approximated 50% more than those affected by the ac-
output from the median operator, Fig. 9. Fig. 9 clearly illus-

trates that the median

tual fault. Now compare these figures with that of the difference

g
and a three sample ACD algorithm, while Fig. 11 shows the

1S ARE

by the transient is small enabling the detection of faults to occur
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output from a CBC fault detection algorithm using a similar
ACD method. While Fig. 10 manages to detect the fault, it also
incorrectly identifies the circuit breaker action as a fault even
after using an ACD technique.. Fig. 11 illustrates the amount
of false detections occurring even with a high threshold setting
and an ACD, due mainly to the aforementioned rippling effect.
Contrast the output from the two traditional methods with that
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Fig. 12. The Output From the Median Operator Fault Detector Before an ACD

from the median operator fault detector without an ACD algo-
rithm, shown in Fig. 12. This figure highlights the ability of
the median operator to discriminate correctly without the need
for extra filtering techniques such as an ACD algorithm; this
increases the relay sensitivity while reducing the time delay.

8 CONCLUSION

A simple, robyst fault detection technique requiring mini-
mum computational burden and utilising statistical information
about the transient signals has been presented. This method
uses the mean and median statistics to estimate the mode from
a set a sampled numbers. Discrimination is provided by moni-
toring the distance between these two estimates. Furthermore, a
simple extension to this method to enable the length of the sam-
ple window to adjust automatically to provide the maximum

-sensitivity is discussed.

A discussion of the requirements for modelling protective re-
laying equipment on a computer is also presented. The ability of
the analogue filter to reduce the performance of a fault detection
algorithm has been illustrated and the effects of restructuring
this filter specifically for anti-aliasing enables higher sampling

rates and therefore higher a cut-off frequency, minimising these
effects.

The adaptive statistical based fault detector presented herein
has been applied to power system relay computer modelling
conducted on an electromagnetic transient program in order to
examine its potential. The performance of the algorithm was
tested against both the SBS and the CBC methods and results
show that correct discrimination is achievable without an ACD
algorithm. These results included in this paper confirm the
potential for this type of FD methodology.
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