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Abstract - The characteristics of wave propagation guided
by a single wire suspended in air above a lossy ground is
studied with special regard to closed-form approximation
of the correction terms for the electric scalar potential and
all components of the magnetic vector potential. The
propagation constant is addressed as is the difference
between scalar potential and voltage for higher
frequencies. Approximations for the complete electric and
magnetic fields are discussed briefly.
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L. INTRODUCTION

In the study of fast transients on overhead transmission lines,
one definite difficulty is realistic modelling of the influence of
the ground. The effect of the finite conductivity of the ground
is to cause resistive losses which are manifested in attenuating
transients travelling along the line. Though much effort has
been spent on the problem for almost a century, knowledge is
still incomplete even for the generic case with a single straight
wire suspended at a fixed height in air above a ground
represented by a half space of homogenous electric properties.
In analyses of low-frequency transients it may do to include a
correction term, relative to the ideal case with an infinitely
conductive ground, for the longitudinal effects only, as shown
by Carson and Pollaczek [1,2]. For more high-frequency
transients correcting has to be done also on the transverse
effects as was shown by Wise [3]. For assessment of the
voltage of the wire, a third correction for the vertical electric
field between ground and wire will moreover be necessary. As
a matter of fact an ensamble of correction terms will come in
if the complete E- and B-field is studied. All these correction
terms will be of integral type and are in a general sense called
Sommerfeld integrals after the solution for the ground effects
on an oscillating vertical dipole [4].

The corrections thus proposed are in fact only approximations
as they have resulted from replacing an unknown propagation
constant occurring in the integrals by that of free space.
Computer codes for transients analyses would in spite of this
approximation still contain time-consuming integrations, and
simple closed-form reasonably accurate approximations are

wanted. One such is the image approximation of Sunde and
Kostenko [5,6] for the longitudinal effects, later generalized
in [7,8] for the transverse effects and in this paper further
exploited for approximating the vertical E-field and the
voltage. It should be pointed out that the approximation of
concern goes by many names such as the complex-depth or -
plane method or the logarithmic approximation, see [7] for a
historic review. Regarding the exact theory, Kikuchi [9]
seems 1o have dome the pioneering work. Frequently
referenced papers on the exact theory are [10] and [11].

. BASI(_J THEORY
A. Problem formulation

We study the propagation of waves guided by an open wave

" guide consisting of a single wire of radius a suspended at

height % in air above ground which is seen as an open half
space of finite conductivity o, relative dielectric constant &,
and permeability iy, see Figure 1. The wire is assumed to be
thin, i.e. h>>a.The structure is assumed to have been excited
by some distant harmonic source and we consider the
propagation to be free of external sources. The fields are
assumed to vary as exp (-1z) and we write the current in the

Figure 1 Wire Above Ground
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line as I=lpexp(-yz+jox), where ¢ is time and @ angular
frequency. The propagation constant ¥ is A priori unknown
and has to be determined.

B. The potentials

It will be most facilitating to work with potentials and here we
will make use of the electric scalar potential V and the
magnetic vector potential A=(A,, A,, 4,). Supposing ¥ to be
given, the potentials in the air are

V(xy)=I[y /(joeo)[Alx y)+ O(x ¥))/(27) (1a)
A(xy)=0 (1b)
Ay(xy)= I}%[y /(joeq)|R(x. )/ (2m) (1c)
A, (xy)= I,uo[A(x, y)+ P(x, y)] /(27) (id)

with A(x,y) = Ko(y.d'(x,5))— Ko (74" (x, )

Pon)= T 22 gny)= T
—oa U] o n?up 4y

o) H e

dk

where E(x,y)= exp[—u 1(h+y)— jkx]
ve=(r3-1)"" 7o =joleono)”
[+ 72-7]" w=[@ o) -]

=[£,.+cr/(jcoso)]”2

1/2 172
4y =[(a-3)" +5*

d’(x,y)= [(h+ y)2 +x2]

Correspondingly, the potentials in ground may be given.
These potentials satisfy the Helmholz equation in conjunction
with the Lorenz gauge condition, vanish at infinity, have the
right singularities at the line source, and give E- and B-fields
that satisfy the boundary conditions on the ground/air susface.
The quantity ¥, is the intrinsic propagation constant of air,

and ¥y, the transverse propagation constant. Further, » is the
refractive index of ground so that AYe is the intrinsic
propagatin constant of ground. K, is the modified Bessel

function of the second kind of order zero. All square roots are
defined so that the real part is positive. This solution is due to
Kikuchi [9] with Ay reconstructed.

In (1), the term A captures the source and the perfect image
fields in the idealistic situation with a perfectly conducting
ground, in which case P, @ and R will be zero. The latter three
terms will be different from zero in the general case and

represent correction terms due to a non-perfectly conducting
ground.

C. The immitances

We consider now a point on the surface of the wire, to be
specific we choose x=0, y=h-a. We can introduce the unit
length series impedance Z and shunt admittance ¥ of the wire

so that the “'telegrapher’s equations”

ZI=yV YV=yI 2

are satisfied. For the matter of simplicity in denotations, the
argument (0, k-a) is understood. They are in fact given by

Z=jops(A+P)/(2z) Y=

)/(27) (3

where the condition that E, be zero on the surface of the wire
has been invoked since we assume that the wire is Iossless.
For a wire with losses a proper term representing the internal
series impedance of the wire should be added to Z.

D. The modal equation

For (2) to have a solution it is required that

y=(2¥)"* = yo[(A+P) 1 (A + Q)] 4)

where it is understood that the right hand side is for the given
point on the line, and moreover is a function of ¥ This so
called modal equation determines ¥.

E. The characteristic impedance

The characteﬁstic impedance 7' of the wire defined by
Z° =V /I is from (2) and (3)

1/2

z° =(zi7)" = Z[(A+PYA+0)] (5)

) 1722

/{(2m)
Zy=(ro/€o

which is completely determined when 7 is defermined. Here,
Zyis the intrinsic impedance of air.

F. The fields

Now, the fields can be determined at any given field peint in
the air by applying E=-VV-jmA and B=VxA on (1). It turns
out that in total nine Sommerfeld integrals are invelved for a
complete field characterization. These can be written as

S(x, )= oj?S *E{x, y)dk ©
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with E(x,y) as before and with

S}=]/(R1+u2) S_;1=k/(u1+u2) S}2=u1/(u1+u2)
Sy =1/(n%u; +u,) Sar=k/(n?u; +u)
Séz=u1/(n2u1+u2) Séj=u2/(n2u1+u2)

: Sé_,z =ku; /(nzul +u2) SéB = kity /(nzu_, +u2)

The denotation system is designed so that the first index
denotes the type of the denominator and that 7 in the second
position comes after derivation with respect to x and 2 with
respect to y. The same applies to the third index plus that 3
means u;.

G. Voltage
The voltage U of the wire is by definition

h—a h-a

U=- [ Eydy=V-Vy+jo [Aydy 7
0 0

h-a

=1L [A+0-0y+T)/(2r) T= (j)R(O, y)dy

J@Eq

where Vg=V(0,0) and Qp=0(0,0). Then we are in a i:;osition
to write the characteristic impedance Zf; =U/I for the
voltage of the wire as

A+ P
A+Q

/2
zZ§ =zo[ J (A+Q-0Qy +T)/(2m) (8)

"= n )

Uy =ty o2 _ gk )dk

Without substantial loss of precision, a has been left out in
comparison with 4 in T, and the same is done for P and Q.

III. APPROXIMATIONS
A. The quasi-TEM approximation

TEM means Transverse Electric and Magnetic fields which
occur only if & is infinite, in which case P and @ both become
zero and } becomes the solution of the modal equation. The
quasi-TEM approximation means that yis set equal to 7 in P
and Q after which the modal equation (4) is directly solved for
the left hand side. We denote this approximation by

superscript ”~”. Specifically we have

&)

. ‘]’ [(kz +p? )uz _lkl](e_z;,m _ e-hIkI) B

~ [k]|:nf'l|k|+(i'c2 +ﬁ2)”2]

with B=y,(n? - 1)”2

which are to be used in (4) and (5). Historically, P was found
independently by Pollaczek [2] and Carson [1] and é by
Wise [3]. The origin of T is unknown to this author.

For the complete field characterization, (6) stands almost as it

172
is just by replacing u; by |k|and u, by (k2 +B? ) .

B. The image approximation

- By image approximation is here meant that the quasi-TEM

approximation is further approximated according to a certain
procedure to yield closed-form formulae. The basic idea of
the procedure is to approximate the S’-factors of (6) in a way
that makes exact integration possible. The main vehicle is the
approximation

[bk+(k2 + B2 )w]_l =%|:I—exp[—k1—;;~b-):|/(1+b) (10)

=exact
=approx

function(k)
o
=

0 05 1 15 2 25 3
k

Figure2  Precisison of the basic approximation
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It is easily verified that the two sides agree asymptotically for
small as well as large values for &/, which so far makes the
approximation promising. In Figure 2, the precision of the
approximation is further probed for the case with both & and
B real and positive. Here 8 =1 is assumed without loss of

generality, and b=0.1, I and /0 are used for illustration. The
maximum relative error for b=1 is +3%. For b</, the figure is
-12%, which is attained for b=0, and for b>1 +30% for &
approaching infinity.

For application on S; and S, i.e. P and {, we set b=1 and
b=n2, respectively. Noting that with ¢=(1+b)/3 we have

ke = hw
(1 e )/k (]}e dw

which used in the integrands of (9), after reversing the order
of integration gives as a result

coo
§ fexp|-k(w+h+yx jx)]dwdk
00

¢ - +h+ytj
=[(w+h+ytjx) dw =£n[c_hy._]x)

0 h+y=jx
giving, with superscript "=" denoting the image
approximation

B 2 12
Sia =$Efn{[(h+y+l—;b—] +x2:|/[(h+y)2 +x2]}

We can thus write

) , 2
B(xy) =—— tn{dg /d")
n?+1

2.\’
dg = [h+y+"ﬁ ] +x?

Here P (x,y} is due to Kostenko [6] and the generalization of
the method giving Q (x,y) to this author [7,8}.

For use in the characteristic impedance, (11) reduces into

= Iy = 2 n?+1
P=tn1+—! O inl 1+ 12
[ ﬁh) n? +1 [ Zﬁh] (12
= 2 n?+1
Qp = £n| I+
LTI [ ph ]

where P was first suggested by Sunde [5] without a formal
proof.

Proceeding to approximate R and T of {7) we have to
approximate S23-522 in (6). Now using again (10) but now
with b=0 we have that

uy=(k? + ﬁz)w =k/(1-¢7P)

Further using the following approximation which is
asymptotically correct for large & and which is correct up to
two terms in a series expansion for small k

- - b-c b-c¢
I1-e ) /(1-e7%)= (-—k )+1
(1= )17 )= mem| 4=
with b:(n2 +I)/ B and ¢=1/ gives, using again (10) for

n2
Ay+h+—
2 Y Zﬁ

+1 2}?
[y+h+£——] +x?
28

the uj-term

= n
R(xy)=
(22) n? (13)

2
n°+1
2 y+h+
1 ( B )
2 2
n +1[ n2+1 2
y+h+ B +x

By (11) and (13), all potentials in (1) have been given closed-
form approximations.

Setting x=0 in ﬁ(x, y)and performing the integration from
y=0to h yields

2 2
. 24 24h Zl
T=-—"—|n’tn g + f (14)
nc+1 n n"+1
14+ — I+
2Bh Bh
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Now, (12) and (14) together with A= £n(2h /a) inserted into

(8) determines the image approximation of the voltage of the
wire. Actually some terms are cancelling so that

n2

24—
2ph

2
n“tn >

ne+1 n
I+—
2Bk

n2

(15

IV. VALIDATION

The validation of the approximations is confined to on one
hand the propagation constant and on the other the
characteristic impedances of the scalar potential and the
voltage. Instead of working directly with these quantities, it is
convenient to have them normalized to the corresponding
quantities for an ideally perfectly conducting ground. We thus
introduce « as the normalized propagation constant and y as
the normalized characteristic impedance through

y=ay, Z° =vyZytn(2h/a)/(2m)

Here Z* and yrapply to either scalar potential or voltage.

Both approximations are compared with the exact solation for
the frequency range 0.05 - 50 MHz. The exact solution use
iterations to solve the modal equation. Figure 2 shows the
trajectories of the real and imaginary part of o, and Figure 3
and 4 the corresponding for y for scalar potential and voltage
respectively. The following parameters are uwsed: h=10 m,

a=0.01 m, & =10 and o=1 mS/m.

Regarding o in Figure 3 it is seen that both approximations
work rather good for the whole frequency range.
Unexpectedly it appears that the image approximation can be
better than quasi-TEM for some frequencies, especially in the
higher frequency range. It should be pointed out that —Im(c;)
is a measure of the attenuation and Re(c) is the inverse of the
phase velocity relative to light.

Regarding w, we notice for the scalar potential in Figure 4,
that the approximations are rather close to each other for the
whole range and they are close to the exact solution up to
about 0.5 MHz. Above that, they differ markedly and quasi-
TEM is slightly better than image.

For the voltagb in Figure 5 the same can be said for the lower -

range. However, for the upper range the situation is more
complex. For frequencies about 5 MHz the image
approximation is better than quasi-TEM while the result at 50
MHz is inconclusive.

Comparing Figures 4 and 5 we note an agreement between the
scalar potential and voltage formulation for the characteristic
impedance at 0.05 MHz. For higher frequencies, however,
there is an increasing difference. We see a markedly lower
resistive and a higher capacitive component in the voltage
than in the scalar potential, as manifested in Re(y) and Im( ),
respectively. Most remarkable is the circumstance that the
resistive component is always greater than unity for the scalar
potential, while it can attain values below that for frequencies
high enough. In effect, while the limiting point is the expected
1+j0 for the scalar potential, it is I-2é 2/é(2h/a) + jO =
0.82 + jO for the voltage. To the authors knowledge, such a
behaviour has not been reported in the literature.

The results of the recent paper [12] seem to differ from those
of this paper. At the root of this may be a missing integral of
the vertical magnetic vector potential wich leads to the scalar
potential difference between wire and ground rather than the
voltage. See further the Discussion in [12].
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Figure 4 Relative characteristic impedance w of a wire
above ground with a potential formulation.

h=10 m, a=0.01 m, =10, =1 mS/m
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Figure 5  Relative characteristic impedance of a wire

above ground with a voltage formulation.
h=10m, a=0.01 m, £=10, o= 1 mS/m

V. CONCLUSIONS

With a voltage formulation for the wave propagation on a line
above a lossy earth, an extra correction term is required in
addition to the two pertaining to the scalar potential
formulation earlier studied. This term, which comprises the
vertical electric field effects, has been identified and has been
found to be of Sommerfield integral type. The approximation
scheme used earlier for the scalar potential formulation has
been generalised in this paper to handle also this new integral.
The precision of the extended approximation method has been
tested for a typical overhead line geometry and has been
Tound reasonably good.

In the cause of running the numeric comparisons, it
surprisingly appeared that the limit for the characteristic
impedance of the voltage for frequency tending to infinity was
different from that of the scalar potential. For the latter, this
impedance coincides as expected with the value when the
ground is assumed perfectly conducting, while for the former
a 18 % lower value was a attained.
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