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Abstract — The paper presents an entirely new approach
to transmission-line modelling resulting in a model
structured around natural MODES of oscillation, unlike
previous models structured around natural MODES of
wave propagation. The principal advantage is that the
new model converts easily from the frequency domain to
the time domain to give a highly efficient structure suited
to economical EMTP implementation.
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[. INTRODUCTION

Computer modelling of power transmission lines is
generaily based on the solution of the well-known
multiconductor Telegraphers’ equations :
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where M{x) and I{x) are vectors of dimension equal to the
mumber of conductors. Equations (1) and (2) are understood
to be in the frequency domain where they are able to take
account of well-known frequency-dependent effects, notably
owing to the nature of the ground return path.

Normally it is assumed that the transmission line is
longitudinally homogeneous (at least over defined lengths)
so that 2 and ¥ are independent of the distance parameter x.
In particular, this allows (1) to be differentiated as
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Direct inward substitution, using (2) to eliminate I(x), then
gives the equation
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whose solution, as is well known, corresponds to wave
propagation which can be decomposed into natural modes by
diagonalising Z¥ [1].

This particular procedure, and consequent model
structure, is so well known that it appears that many
Tesearchers may have assumed that this is the only possible
solution procedure. The present paper describes a
completely different approach which leads to an entirely
different model structure. Both methods necessarily yield
the same 1esults when applied in the frequency domain. The
advantage of the new approach is that it sfructures the
solution in a way which allows easy (and accurate)
translation of the model from the frequency domain to the
time domain for EMTP implementation. Note, for example,
that the new model structure does not involve the numerical
convolution [2], or the weighting functions [3, 4, 5], of
previous models.

In the new model, the transmission line is modelled by
discrete R, L, C clements, but in an entirely different way
from traditional lumped-parameter models mentioned in [6].
In particular, well-known frequency-dependent effects can be
taken fully into account using what the anthors believe may
be a minimum set of discrete (frequency-independent) circuit
clements (rclative to a specified bandwidth requirement,
such as 20kHz).

Furthermore, the new method does not need to assume
longitudinal homogeneity. It also overcomes, in a
completely different way, the problem of the frequency
dependence of the transformation matrices of models based
on natural modes of wave propagation [7].

II. ANALYTICAL FOUNDATION

Instead of solving (1) and (2) in the conventional way, the
new approach is based on first integrating these equations as

1
V(x)=V({)+ I Z(@)I{(x)dx (5)

I
I =I(D)+ j‘ YV (D)dt 6)

.where ! is the length of the transmission line.

Note that this step does not require the introduction of any
assumption regarding longitudinal homogeneity.
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‘Whilst (5) and (6) are mathematically equivalent to (1)
and (2), the new fornmlation has the important effect of
introducing boundary values at the outset. Note, of course,
that the sending-end voltages and currents are included in
the formulation on setting x=0. Also, the formulation
includes the system length.

By including boundary values and physical length,
solution of (5) and (6) leads to a model which is very
different from that obtained by the conventional approach
(where the basic equations are solved without reference to
length or boundary conditions).

In principle, solution of (5) and (6) proceeds by
substituting (6) into (5) to ¢liminate current at all points
along the system except at the boundaries. Unfortunately,
this process leads to an integro-differential equation which is
too difficuit to solve analytically (which is probably why this
approach was never pursued in the past). However, there is -
no difficulty in solving the equations on a discrete basis
using nomerical quadrature. Nevertheless, successful
implementation of the approach, to yield a frequency-domain
model which converts easily and accurately into an efficient
time-domain counterpart, depends on a degree of ingenuity-
in organising the equations for solution.

III. FREQUENCY-DOMAIN PROTOTYPE MODEL

Owing to the strong frequency dependence of the elements
of the series impedance matrix Z(x), it is necessary to
formulate the transmission line model in the frequency
domain in the first instance. The second step, discussed in
section V, is to convert the frequency-domain prototype into
a time-domain counterpart.

Let the multiconductor transmission line be represented in
K sections as shown in Fig. 1. Note that, at this stage, there
is no approximation involved. In particular, there is no
assumption that the sections are of equal length or that they
are individually longitndinally homogeneous.
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Fig. 1: One-line diagram of mulficonductor

transmission system split into K sections

Each of the K sections of Fig. 1 is represented by a
multiterminal equivalent-n circuit of the form shown in
Fig. 2 (which shows the representation for the kth section).
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Fig. 2: FExact equivalent-7 representation of kth section

As stated, it is not necessary for each, or any, of the sections
to be longitudinally homogeneons. However, it helps clarify
matters to note that if the kth section is of length /, and
happens to be longitudinally homogeneous then the matrices
in Fig. 2 would be given by

Z, =sin(I" [ )Z,, )]
Y, =Y, =Y, tanh (r;—l") (8)
where
r k= (Zka)1/2
Y,= Zk—]r K
Zy, = series impedance muatrix per unit length of kth section

) 1

shunt admittance matrix per unit length of kth section

So far as the frequency-domain prototype is concerned,
dividing the transmission line into a cascade of sections, as
in Fig. 1, does not require or involve any approximation. If
the line happens to be longitudinally homogeneous, then it
would be logical to divide the line into sections of equal
length and use (7) and (8). Indeed, the line could be
represented by a single equivalent-n section, However, this
is not what is required and would not lead to the destred
model structure. Nor is there any question, now or later, of
simply approximating each section by an equivalent-w circuit
valid at only one frequency.

Instead, on the basis of Figs. 1 and 2, the integral
equations (5) and (6) become

Vi =V + Y Z,I' () ©)

J=k+1

K
I(k)=I(K+1)+Z(YM+1+Yq.) Vip (10)
i 7
Reference [8] details how these equations are solved to give
a model of the structure shown in Fig. 3. The admittance
equation, corresponding to this model, is

Iy = {0, +Y" 5 +PgP, }V, an
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and the voltages at discrete distances along the transmission
line are given (if required) by the elements of }’ where

V'=0gPVy (12)

distribution
matrix

front-end
of model

transformation core of
matrixes model

Fig. 3: New MODAL transmission-line model

The nature of the model is revealed in the following section
which relates to a simple illustrative case .

IV. TILLUSTRATIVE LINE

Although the proposed method is applicable to all
transmission lines, regardless of the number of conductors, it
is sufficient for pedagogic purposes to treat the case of a
single-phase line. The conductor is taken to be at a height of
15m above a semi-infinite homogeneous earth-return path of
resistivity 1002m. The conductor itself is modelled as
though it were solid aluminium (radius 1.5cm, resistivity
3.2x10%Qm). A line length of 64km was chosen.

As will become clear later, the bandwidth of the eventual
time-domain model depends on the number of sections into
which the line is initially split. As an illustrative case, the
line is split into 16 sections (each of length 4km). Since the
line is longitudinally homogeneous, cach section is identical.
The equivalent-r representation of each section is then as
shown in Fig, 4 where Z, = JE/_Y ; Z is the serics impedance

of the line per unit length and ¥ is the shunt admittance per
unit length,

Z, sinh (IYZ7)

—0

Fig. 4 : Equivalent-zrepresentation of each of the 16
sections of single-phase line (1=4km)

The solution procedure outlined in section I converts the
cascade of sections defined in Fig. 4 into a model with the
structure shown in Fig, 3. P, (the transpose of P) acts as a
transformation matrix. In the present case, F, is purely real
and independent of frequency as specified in the Appendix.
This matrix acts on the boundary voltage vector

VS
's= [VJ
(where V5 and V; are the sending-end and remote-end
voltages, respectively) to produce a set of 7 MODAL input

voltages. The jth modal input voltage then acts on the jth
element of the diagonal matrix g.

The nature of the elements of g is revealed in Fig. 5. This
shows the amplitude spectra of the 7 MODAL transfer
functions up to a frequency of 20kHz. Each mode is seen to
be characterised (within the given frequency range) by a
single natural resonant frequency. The lowest natural
frequency of the model is 2.10kHz which physically
corresponds to fundamental natural resonance with
common-mode energisation (Vg =F5s), i.e. corresponds to
1/27 where < is the transit time for wave propagation from
one end of the line to the other (0.24msec in this case). The
second natural frequency (4.27kHz) corresponds to second-
harmonic natural resenance, the third natural frequency
(6.47kHz) to third-harmonic natural resonance, and so on.

16 20

3 12
freqency (kEE)

Fig. 5: Amplitude spectra of MODAL transfer functions

This clarifies that the NEW model is centred around
natural MODES of oscillation (and not around natural
modes of wave propagation as in Wedepohl’s model [1]).
The higher-order natural resonances are less damped than
the lower-order ones on account of reduced flux penetration
into the ground at the higher frequencies.

The action of the elements of g (Fig. 5) is to produce a set

- of 7 modal output voltages (the clements of V' ). These are

distributed along the line by the columns of ¢ which
superposes them to give the elements of V*. For
longitudinally homogeneous single-phase lines,  is always
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purely real and completely independent of frequency. For
the illustrative line, it is as given in the Appendix. The jth
colnmn of @ acts to distribute the jth modal output voltage
along the line. Fig. 6 illustrates these distributions
graphically for the cases of modes 1-3. The columns of O
are thus seen to correspond to the standing wave patterns
associated with the natural resonances of the line.
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Fig. 6 : Graphical representation of modal distribution

vectors (modes 1-3)

Calculations show that for frequencies up to 16kHz, the
elements of the diagonal matrix £ may be taken as purely

capacitive.

Y, and Y'' ;p in the front end of the model (Fig. 3) are

2x2 matrices, The former is essentially inductive in nature
{with significant frequency dependence); the latter is
essentially capacitive.

The task is now to demonstrate how snch a frequency-
domain prototype converts to a time-domain counterpart,

V. CONVERSION TO TIME DOMAIN

Details of the conversion for a general case (i.e. polyphase
transmission lines) will be given in a forthcoming
publication {9]. The present treatment illustrates basic
methodology by restricting attention to the case of the single-
phase line of the previous section ,

The transformation matrices P, and P are purely real and
completely independent of frequency (given in the
Appendix). The same is true of the distribution matrix @
(also given in the Appendix). It follows that their action
applies equally to the time domain as to the frequency
domain,

The action of the elements of the diagonal matrices g and
€ is now approximated by the action of RLC circuits of the
form shown in Fig. 7.

Ry L;
° AWl Uiy o
= i)
v.(f) & i
’ TG
O )
Fig. 7: RLC approximation of action of {; and g;

Using the circuit values given in Table 1, Fig. 8 shows that
these circnits are able to almost exactly replicats the exact
amplitude spectra of Fig. 5. However, this is ONLY true at
the lower frequencies. Fig. 9 compares the exact spectrum
with the approximate spectrum over an extended frequency
range (0-100kHz) for the particular case of mode 4 (this case
is typical of the resuits for all the modes).

Table 1 : Modal parameters for 64km single-phase line

J S (kHz) Gi (uF) L;(H) R (Q)
1 2.1000 0.0293 0.1956 196.4043
2 42725 0.0293 0.0473 89.9357
3 6.4708 0.0293 0.0206 55.9963
4 8.6836 0.0293 0.0115 39.3908
5 10.9099 0.0293 0.0073 29.5085
6 13.1447 0.0293 0.0050 22,9221
7 15.3865 0.0293 0.0036 18.1817
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Fig. 8 :

Approximated spectra of MODAL transfer
JSunctions
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Fig. 9: Comparison befween exact spectrum and
approximate spectrum for mode 4

However, by choosing o include the natural resonances
shown in Fig. 5, the model is limited to a bandwidth of about
16kHz (i.e, natural resonances above this frequency are not
included in the model), Thus, approximating the exact
spectrum by the dotted curve in Fig. 9 only suppresses
features which are outside the inftrinsic bandwidth of the
model.

Excluding the front-end of the model in Fig. 3, the NEW
model models the transmission line in the given illustrative
case using just 7 circuits of the type shown in Fig. 7 (with
data as given in Table 1). Such circuits are, of course, easily
and efficiently modelled using standard EMTP methodology.
To ensure accurate modelling up to 16kHz, it is appropriate
to choose Ar=8psec (i.e. Shannon’s theorem applied two
octaves above the maximum resonant frequency).

The individual modal circuits are accessed by the action of
the frequency-independent transformation matrix P, (given
in the Appendix). The currents at the boundary terminals of
the model are the MODAL circuit currents aggregated (see
Fig. 3) by the action of P,

Thus, excluding the front end of the model, the given
transmission line has been modelled using just 7 resistors, 7
inductors and 7 capacitors. Unfortunately, space does not
permit a description of the modelling of the front end of the
model (details are given in reference [9]). It is sufficient to
note that modclling the front end would typically account for
less than 10% of the total computational effort.

VI. RESULTS

Fig. 10 shows the result computed by the time-domain
model (with Ar=8psec) for the case of energisation of the

64km line at crest veltage from an infinite 50Hz source. Itis .

seen to be in remarkably good agreement with that computed
using Wedepohl’s full frequency-domain model. The high-

frequency oscillations are due to having neglected resonant
effects above 16kHz and may be digitally suppressed (if
desired) to give the waveshape shown in Fig. 11. Fig. 12
shows the computed result half-way down the line (again
compared with the result obtained by full-frequency-domain
analysis).
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Fig. 10 :  Results at the receiving end of the line
------ Wedepohl resuit

—— Time-domain result

)

time: ()
Fig. 11 :  Filtered version of the time-domain output
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Fig. 12:  Resuits half-way down the line
------ Wedepohl result

-~ Time-domain result
VII. CONCLUSIONS
The paper has shown that it is possible to model

transmission lines in an entirely different way from
conventional transmission-line modelling and still achieve
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comnparable results, inclusive of proper account of frequency-
dependent effects.

The model is structured arcund natural resonances which
can be modelled by simple RLC circuits for EMTP
implementation.

The method is similar to Wedepohl’s in the sense that
MODAL decomposition is involved in both cases. In
Wedepohl’s model the decomposition is into natural
MODES of wave propagation, in the proposed model the
decomposition is inio natural MODES of oscillation.

The quality of the computed time-domain results (Figs.
10-12) has been shown to be good notwithstanding the fact
that the dominant natural frequency of these oscillations is
around 1kHz whereas this frequency does not feature as a
natural frequency of the model (see Table 1).

The modest errors apparent in the results given in Figs, 10
and 12 are entirely due to inaccuracies in fitting the exact
spectra of Fig. 5 with the specified RLC approximations. At
the expense of more sophisticated circuit approximations,
these errors can be more or less entirely eliminated.

An important featare of the new model is that it’s
bandwidth is explicit (16kHz in the given example). This is
important in the context of general EMTP studies where,
ideally, all plant should be imodelled to a same bandwidth.

The method is applicable to 3-ph lines. The
computational requirement is simply tripled (i.e. there are
three times as many natural resonances to be taken into
account). It is important to emphasise that as computational
requirements are directly propostional to the number of
conductors, there is no advantage to be gained by
incorporating Wedepohl-type modal decomposition.
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IX. APPENDIX

Modal transformation matrix P,

(17948 17543 ]
08887 —0.3387
05828 05828
Pr=|04268 —04268
03307 03307
02646 —0.2646
[02154 02154

Inverse modal fransformation matrix P ;

[1.7948 08287 05828 04268 03307

02646 02154
17943 -08BRT 05828 04268 03307

-02646 02154

Modal distribution matrix @ :

[0.0690
01353
01564
0:2500
0:2940
03266

01353
02500
03266

01964
03265

02500 02940 03266 0.3468
03536 03266 02500 (1353
03468 02500 0.069¢ -01353 -02940
03536 02500 00000 -02500 -03536 -02500
03266 00690 -02500 -0.3468 -01353 01964
02500 -01353 -03536 -01353 02500 03266
03468 (1353 -02940 -02500 01964 03266 -0.0690
@=103536 00000 -03536 00000 03536 00000 -03536
03468 -01353 -02940 02500 01964 -03266 -0.0690
03266 -02500 -01353 03536 -01353 -02500 03266
02040 —03266 00690 032500 -0346% 01353 0194
02500 -03536 02500 00000 -02500 03536 -0.2500
01964 -03266 03468 -02500 00650 01353 -0.2940
01353 -D2500 03266 -0.3536 03266 -02500 01353
00690 -D1353 01964 -02500 02940 -0.3266 03468
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