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Abstract: This paper presents improvements to an existing
multi-limb transformer model by applying normalized
core concept. It shows that multi-limb transformers can
be accurately modeled without having to specify actual
core dimensions and winding turns number. The paper
includes re-formulation of the wunified magnetic
equivalent circuit (UMEC) model to demonstrate the
application of normalized core concept. The modified
UMEC model in PSCAD/EMTDC is validated using
experimental and field test data.
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I. INTRODUCTION

A transformer is represented in an electromagnetic
transients program by its equivalent network consisting of
resistors, inductors and capacitors.  Most programs use
transformer models based on Steinmetz equivalent circuit,
This equivalent circuit can accurately represent single phase
transformers. Its parameters can be easily obtained from
standard transformer tests such as open circuit and short
circuit tests. However, it is not adequate to represent multi-
limb transformers which have non-uniform flux distribution
and inter-phase coupling. Recently new methods for
modeling multi-limb transformers (or deriving its equivalent
circuits ) have been proposed.

Using a state variable approach, and assuming a
magneto-quasi-static  condition, Chen has developed an
inverse inductance matrix model for ATP. [1],§2] The
principle of magnetic-electric circuit duality has been
applied by Stuehrn to create a multi-limb transformer model
for EMTP. [3] A unified magnetic equivalent circuit
(UMEC) approach [4],[5},{6] which directly converts any
transformer magnetic circuit to an electric circuit equivalent,
has been adopted by PSCAD/EMTDC.

The UMEC transformer models require the user to input
detailed core parameters. However magnetic core
dimensions, winding turns number, and core B-H saturation
characteristics are generally only available to the transformer
manufacturer. Therefore, appiication of the existing UMEC
models or, for that matter, many multi-limb transformer
model has been limited.
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This paper presents a further development to the UMEC

transformer model that eliminates the necessity to input
detailed core data. Now users can model 2 multi-limb
transformer more accurately with the same data that they
have been using with single phase banks. Exact aspect
ratios {relative core dimensions), if specified, can improve
accuracy but are not critical as shown by the sensitivity
analysis in this paper.

The inductance matrix is computed using the concept of a
normalized core. Results obtained with typical transformer
data and detailed core parameter UMEC models are
compared and verified with laboratory and factory test
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(a) Core flux paths
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(b) Unified magnetic equivalent circuit
Fig. 1: A three-limb three-phase transformer
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For simplicity and clarity, the normalized core concept is
discussed using the linear circuit of a three-limb three-phase
transformer as shown in Fig. . The final formulation is
applicable to any configuration, for example, a five limb
transformer including non-linearity.

II. THE UMEC TRANSFORMER MODEL

This section introduces the existing UMEC formulation.
The flux paths of Fig. 1{a) correspond directly to the UMEC
branches of Fig. 1(b). The transformer core is broken up into
winding-limb (paths 1-6) and yoke (paths 13-14) branches.
The leakage and zero sequence flux branches are paths 7-12,
and 15-17 respectively. The UMEC formulation (Appendix
A) creates the transformer inductance matrix L as given by
Eqn. 1. [4L[5},[6]

L =NJSMIJNJS (1)

If the number of transformer windings is n, then N, is the
m*n diagonal matrix of winding turns number. M., is the n*n
upper left-hand partition of Eqn. 2 (see also Appendix A).

M=P-PA(ATPA)'ATP (2}

If the number of UMEC branches is m, then P is the
m*m diagonal matrix of branch permeances. A is the m*n
rectangular branch connection matrix. Appendix B gives the
branch connection matrix for the three-limb three-phase
UMEC of Fig. 1(b}.

III. DIFFICULTIES WITH UMEC MODEL

Eqgns. 1 and 2 highlight the present difficulties of UMEC
model application. Implementation requires knowledge of
the primary and secondary winding turns number, and the
branch permeance at each time step. Moreover, the
permeance of the transformer core flux paths is a function of
core dimensions as given by Eqn. 3.

_ Holh 3
p bt ®

where g, p, isthe core permeability taken from the steel

B-H characteristic. A and L are the cross-sectional area and
length of the magnetic circuit branch respectively. The
requirements of winding tums number, steel B-H
characteristic, and core cross-sectional area and length
would limit the model usage to transformer manufacturers.

IV. NORMALIZED CORE CONCEPT
Consider the simple inductors shown in Fig. 2.

o {7, =N/Ple & ;. =Np @
(a) ()
Fig. 2: Matched inductors
Inductance is given by Eqn. 4.
L=N?P e

Even if the permeance P, of inductor (a) is different than
permeance P; of inductor (b), the two devices can exhibit the
same inductance if N, and N; are appropriately adjusted.

The inductor manufacturer must carefully select core
dimensions, winding turns number, and steel characteristics
based on practical constraints, present technologies and
experience. However, to simulate these inductors in electrical
domain we are not concerned with the differences in the
design parameters such as core dimensions and turns
numbers.

We can extend this philosophy to the UMEC model to
eliminate its dependency on core geometry and turns
nuinber.

V. MODIFIED UMEC MODEL

The transformer inductance matrix can be calculated from
the parameters: rating MVA, primary and secondary voltage
V1,Vs, leakage reactance X, rated angular frequency wy,
magnetizing current f,,, and core aspect ratios ry, ri. All
parameters, excluding the core aspect ratios, are transformer
name-plate data. Moreover, in the transformer manual that
accompanies purchase, it is reasonable to expect scale
drawings of the transformer core. The core aspect ratios of
Eqns. 5 and 6 can be obtained from such drawings.

A

L A—y (5)
L
- ©
where A, and A, are yoke and winding-limb

cross-sectional areas respectively, L, and L,, are yoke and
winding-limb lengths respectively. The core dimension
definitions are shown in Fig. 3.
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Fig. 3: Three-limb core dimension definitions

The three-limb three-phase transformer diagonal matrix of
branch permeance P is comprised of winding-limb P,
winding-leakage Py.;;, yoke-limb P34, and zero-sequence
P\5.17 elements. Eqns. 7 to 9 define these terms.
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I,y is the current base on the transformer primary.

Xz, 1 1 1
Bp=Fsy= "j(’)_MF = k?-:zF = krs-u'ﬁz' @®
: i 1 .
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Z;y the impedance base on the transformer primary.
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In Egns. 7 and 9 the core permeability has been set
according to Eqn. 10.

(10)

Eqn. 10 ensures that on open-circuit, at rated voltage, the
rated magnetizing current flows in the outer transformer
windings. In Eqn. 8 the permeance of the primary and
secondary leakage branches are set equal, and in the absence
of specified zero-sequence inductance, the permeances Pys.y;
are set equal to the leakage. All equations can be redefined
with variables referred to the secondary side (Va, Na, L1z, Zi2)
rather than the primary side (Vy, N1, Loty Zp1).

The scalar 7/ N? is common to all elements of the '

matrix P and can be extracted. ‘
1
= FK (11

Substitution of Eqn. 11 into 2 gives

1 -1 1 1 1
M=—I(K-KAATKA) AT™K)—=—M"—
Nr( ( ) )NJZ N]M N, 4z
and Eqgn. 1 can be rewritten as
.l " I - & ok
L= N; N:st:N.n NJ = N.N'MH’NJJ (13)

1
The product ——N, =N'. is a diagonal matrix with
!

“elements equal to unity or the transformer turns ratio. Thus,

N, Y N =V’ 14
= =

Nz Vz 35 I ( )

L=V.M.V, (15)

Using Eqn. 15 the transformer inductance matrix is now
defined from the UMEC using only the variables MVA, V,,
Vo, X, 00, Iy 1y and ry,.

VI. SINGLE PHASE EXCITATION TEST

A three-limb, three-phase laboratory transformer was
selected to validate the normalized core concept. A
single-phase excitation test was chosen to demonstrate the
strong inter-phase magnetic coupling typical of this core
type. The test was simulated using both the modified model
and the old model. The modified model used the name plate
data while the old model used the detailed core parameters
givenin Table 1.

Table 1: Laboratory transformer parameters

Name-plate data Core parameters
Rating 40kVA A. | 00122
Configuration | star-star L, 0175 m
Frequency 50Hz 4, | 00122
Vi 240V L, | 0180m
V2 70V o, 2000
N, 108
N, 31

In Fig. 4 the transformer red-phase primary winding is
energized. When the voltage V,,,, is applied to only one
winding, the magnetic flux from the energized limb returns
via the remaining two limbs.

The return path reluctance for the red-phase flux &; via
the yellow winding-limb is less than that via the blue
winding-limb. The yellow-phase flux &, is thus slightly
greater than 0.5¢; and the blue-phase flux is slightly less
than 0.5&. The magnitude of the primary yellow and blue
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phase voltages are slightly greater and less than 0.5V, ,
respectively. The orientation of the yellow and blue phase
windings phase shifts the primary and secondary voltages by
180 degrees.

If this multi-limb transformer was represented using 3
single phase transformers in the simulation, the voltages on
the non-excited windings would be zero.

Experimental and simulated resulis for a 240V excitation
of the laboratory transformer red-phase primary winding are
shown in Fig. 5. The normalized core waveforms exactly
match the detailed core model simulation and hence only one
of these is shown. Simulated waveforms agree with the

experimental data.
¢

o, >0, $ <V
Fig. 4: Laboratory transformer single-phase excitation
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Fig. 5: Single-phase excitation, primary winding
voltages; Solid = recorded, Dotted = simulated UMEC
model: (a) Red-phase, (b) Yellow-phase, (c) Blue-phase

VIL. OPEN CIRCUIT TEST

Table 2 presents the name-plate data for the Manapouri
three-limb, three-phase transformer units operated in the
South Island, New Zealand ac system. The parameters
required for the detailed core UMEC model of the
Manapouri units are also given in Table 2.

Table 2: Manapouri transformer data

Name-plate data Magnetic core parameters
Rating 150MVA A, 0.5555 ni®
Configuration | delta-star L. 1932 m
Frequency 50Hz A, 0.5635 m®
V) 13.8kV L 4.000 m
V, 220V B-H slope 7.33e-3
X 11.3% Ny 78
N, 718
Py 1.67e-7
Pis.y7 1.67e-7

The open-circuit line currents of Fig. 6 correctly reflect
the magnetic unbalance in the magnetizing current of the
three-limb core type. The yellow and blue-phases carry the
same current, whereas the red-phase current is greater. This
is expected for a delta connected three-limb transformer.
Both the modified UMEC and detailed core UMEC give the

same resuit.
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Fig. 6: Simulated no-load currents of Manapouri
transformer :

Finally, Table 3 compares the two models for open-circuit
and short-circuit behavior with factory test results. The
comparison shows a very good agreement between test
results and simulation.
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Table 3: Factory test data validation.

Factory UMEC model
measurement simulation
No-load red-phase 242 Amps 243 Amps
current
Short-circuit 11.3% 11.2%
leakage reactance

VIIL SENSITIVITY ANALYSIS OF ASPECT RATIOS

To use the UMEC model, Users need core aspect ratio 1,
and core cross-sectional area ratio r,, in addition to the
normal name-plate data. Users may have to estimate these
ratios if they are not readily available. In most situations, r,
can be set to unity. From Eqn. 8 it is clear that the leakage
paths are not affected by these ratios. They mainly affect the
distribution of flux among the limbs.

Single phase excitaion test of Section VI was used to
verify the effect of r, on the electrical behaviour of the
model. A 20% change in 1. produced only 0.5% change in
the induced voltage. Similar results were obtained with
other tests as well. Hence, it is clear that the electrical
behaviour of the transformer is very insenitive to core aspect
ratto and a default value can be used if the actual value is not
available.

IX. CONCLUSIONS

Commonly available name-plate data is sufficient to
accurately model multi-limb transformers in electromagnetic
transient programs. The normalized core concept used in
this paper to modify UMEC formulation can ke applied to
other multi-limb models [1] [2] and eliminate the need for
detailed core geometry.

X. FURTHER WORK

Although only linear transformer model was discussed in
this paper, the normalized core concept is equally applicable
to non-linear part of the transformer. The non-linear
behaviour of the core can be handled by repeated use of the
linear model with permeances changing every time step or
on a piece-wise linear basis. Modeling of saturation using
these concepts along with results of other types of multi-limb
transfomers will be the subject of a subsequent paper.
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APPENDIX A

This formulation derives the transformer inductance
matrix from the UMEC. As an example, refer to the
three-limb three-phase UMEC shown in Fig. 1(b). The flux
¢ in each branch of the UMEC can be written in vector form

¢=P(Ni-0) (16)

where i is the vector of winding current (zero for branches

with no winding) and 0 is the vector of mmf across each
branch.
At each UMEC node the flux must sum to zero, stated as

AT$=0 an
Application of the branch-node connection matrix A to the
vector of nodal mmf node gives the branch mmf.

AD,., =0 (18)

Multiplying Eqn. 16 by A" and substituting in Eqns. 17
and 18 gives

0=ATPNi-A"PAG,, (19)

Solving Eqn. 19 for node and multiplying both sides by
A gives

A0, =A(ATPA)’ ATPN{ (20
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Substitution of Eqn. 18 into Eqn. 20 allows Eqn. 16 to be

written as

¢ =MN; @n
where

M=P-PA(ATPA) ATP (22)

If the vector of branch flux is partitioned into the set that
contains the branches associated with each transformer
winding then Eqn. 21 becomes

o, =M_ N, (23)
and the transformer inductance matrix can be written as
L = N.TIMJJNJS (24)
APPENDIX B

Following is the connection matrix A for the three-phase
three-limb UMEC transformer shown in Fig. 1

1 -1 0 0 O O
o 1 0 0 0 O
o 0 1 -1 0 O
6o 0 o0 1 o6 O
¢c o 0 0 1 -1
¢ 0o 0 0 0 ¢t
-1 0 O 0 O
O -1 0 0 0 O
[A]=0 0 -1 1 0 0
¢ 0 0 -1 0 O
6 0 0 0 -1 1
o o0 0 0 0 -1
-1 0 1 0 0 O
0o 0 1 0 -1 O
-1 0 0 0 0 O
0O ¢ -1 0 0 O
0 0 0o 0 -1 O
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