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Abstract - This paper describes a method to obtain
dynamic equivalents for electromagnetic transient
analysis including frequency-dependent transmission line
parameters. The method uses the set of transfer function
dominant poles and associated residues. This technique
can be directly applied to both state equations or
descriptor systems models and is highly suited to sparsity
oriented applications. This feature obviates concerns with
the electrical network size and topology.
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1. INTRODUCTION

Reduced order network equivalents have been
used to cope with otherwise prohibitive computational costs
in electromagnetic transicnt analysis. The development and
assessment of these equivalents have been a continuous
research topic over the last decades [1, 2, 3, 4].

This paper models lumped parameters (RLC)
networks of any order and topology through an augmented
set of equations (descriptor systems) [5]. The resulting
system matrices are highly sparse. The concept of transfer
function dominant pole spectrum [6, 7] is exploited to obtain
reduced order dynamic equivalents.

The most accepted models of transmission
lines with frequency-dependent parameters are based on
rational function approximations of the propagation and
characteristic admittance transfer functions for each mode of
~ propagation [1, 2]. These rational approximations can be
readily implemented as state equations.

The method deals with state variable
redundancies and can be efficiently applied to large scale
networks. The complete network dynamic model is very
sparse and several linear systems techniques (frequency
response, numerical integration, modal analysis, etc.) can be
directly and efficiently applicd.

The dominant pole spectrum algorithm [6, 7]
allows the selective computation of the reduced set of the
eigenvalues which dominate the system response. The partial
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fraction expansion of the transfer function is truncated when
the residue magnitude drops below a certain threshold. The
dimension of the reduced model is then adjusted for a better
fitting of both the frequency response and the time responsc
of the system.

The time and frequency responses of the linear
reduced order model will be compared with those of a full
size test system obtained with EMTP simulations.

2. PROBLEM FORMULATION

The frequency-dependent transmission line
model is based on the equivalent circuit [8, 9] shown in
Figure 1.

1 Z Z
k [ c Im
9 1 e
E E
Vk k <“> m Vm

Figure 1. Transmission Line Equivalent Circuit

Since the characteristic impedance and the
propagation function may be represented by rational
functions approximations {1, 2], the equivalent circuit above
yields the following equations:

PXCRACIORE VT
E,(s)= [Vk (5)+z.(s)1, (s)]A(s)
Vi) = Z{s)(s) + Ei ()
V() =Z,(s)1(s) + E,(5)

These equations may be represented in bloc
diagram form, as shown in Figure 2. :
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Figure 2. Transmission Line Equivalent Block Diagrams

The block diagrams represent the transmission
line as a two-input two-output transfer matrix in which the
terminal voltages Vi(s) and V(s) and currents 7,(s) and I.(s)
are the variables of interest:

[;:((Z)J:[G(S)]m [’Zgﬂ 2a)
et )

The frequency-dependent line model obtained
with the J. Marti’s sefup of the EMTP (FDLINE) I, 8]
determings a rational approximation of the meodal
characteristic impedance Z(s) and propagation function
A(s). These functions are expressed as transfer function poles
and associated residues, which may therefore be written in a
diagonal form state equation [10].

(2.b)

Note that the transfer function approximations
of the FDLINE model have only real poles. The state
equation can be written as

x=Ax+Bu
y=Cx+Du ®
where

A = diag(A;)

B = column vector with elements 5;

C = row vector with elements ¢;

D = transfer function valuc when s — «

where ; is the transfer function pole and the product b..c; is
its associated residue.

The characteristic impedance transfer function
is proper [11], i.e. it has an equal number of poles and zeros.
Thus, the inverse transfer function is also proper and can be
represented as a state ¢quation. Furthermore, the SISO
inverse transfer function [11) can be directly obtained in its
state equation form;

=A-B.C.D"*
=B- D_l
=-p7'.C
=D}

The propagation function can be expressed as
the product of a rational transfer function and a pure time
delay component [1]. The time delay can be exactly

expressed, in the frequency domain, as the transcendental
function below:

@

Sl o W

Ad(s) =g *F &)
where 7 is the time delay constant.

The method of this paper requires a state space
realization for the system model. For the pure time delay,
this realization can be based on the Padé approximation
[123:
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A Padé approximation of order 4 is quite
adequate to this application, as the results will demonstrate.

The state space realization of the single-phase
FDLINE model has an order equal to twice the order of Z(s)
plus twice the order of A(s) plus twice the order of the Padé
approximation,
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3. RESULTS

3.1. Single-Phase Line Energization

The results presented in this section are related
to a single-phase transmission line. The FDLINE model [1)
yielded approximations of order 19 to the characteristic
impedance and order 28 to the propagation function. In this
case, with a 3" order Padé approximation, the line model
has 100 state equations.

, A voltage unit step was applied at terminal %
of the single-phase transmission line with terminal m
grounded. Figure 3 shows the current at terminal %
calculated from the block diagram of Figure 2.(a) for time
delay Padé approximations of different order. These results
arc compared with those obtained with the EMTP,
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Figure 3. Step Response to Voltage Input

The curves labeled as “Error” are the
differences between the EMTP response and the respective
Padé approximation response. The error due to the Padé
approximation is more noticeable in the very beginning of
the simulation, where the time delay effect is more
pronouced. The 4™ order Padé approximation yielded
slightly better results than the 3 order one.

Figure 4 shows the current at terminal k¥ when
a sinusoidal voltage is applied at the terminal k¥ while
terminal »2 is grounded.

It is seen that the results are in very good
agreement, with the maximum error being 0.0019 and
0.0029 for the 4% order and the 39 order Padé
approximations, respectively.

The block diagram of Figure 2 can be used as
a fairly good frequency domain approximation of the
FDLINE model. The order of the time delay Padé
approximation can be adjusted to yield a better response.
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Figure 4. Response to a Sinusoidal Voltage Input

3.2. Low Order Dynamic Equivalents

A low-order dynamic equivalent can be used to
reduce the complexity of a model and, therefore, the
computational effort associated with its use,

Figure 5 presents the system configuration
used to test the synthesis of the reduced-order dynamic
equivalent. This system includes RLC lumped parameters
network branches and a frequency-dependent transmission
line with the same parameters as the one presented in the
previous section.
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Figure 5. Test System Configuration
The complete dynamic model that describes
this system has 111 equations. The current /(s) and the
voltage ¥(s) will be considered as input and output variables
respectively. Thus, the transfer function '

YO _
9 =2 D

is dimensionally equivalent to an impedance.

Figure 6.a shows the poles, while Figure 6.b
shows both poles and the zeros of this transfer function. One
must note that several poles are partially canceled by a
nearby zero. A low-order approximation of this transfer
function may therefore neglect these poles. The remaining
poles are considered dominant poles of the transfer function.
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7000 Figure 7 compares the frequency responses of

® the system, obtained through a frequency scan on the EMTP
5000 and on the 12™-order model. Note that the major difference
x lies in the lower frequency range (< 2 Hz).
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Table 1 presents the poles and associated (b). Phase Plot

residues of the reduced-order model considered in this paper.
The reduced order model defined by these poles and residues
has order 12, All the other poles of the system have residues
with magnitude smaller than 0.3% of that of the greatest
residue.

Table 1. Reduced Order Model Poles and Residues

Figure 7. Frequency Response of the Test System
Figure 8 shows the response (terminal voltage)
of the test system depicted in Figure 5 to a step input
(terminal current) obtained through an EMTP simulation.

POLE RESIDUE

real imag real imag_
-52.376| +4305.678] 183102.907| -6742.172
-20.905]  +722.580] 169044.222] -1291.908
-69.236] +2666.716] 139667.050] 10278.789)
244311 +6298.359] 11196.520] -2795.859]

-1462.140 -2632.120
-1016.548 -2319,746
-1480.442 -1417.564
-270.856 -1029.676
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Figure 8. Step Response to Current Input

The response of the reduced-order model is
also plotted for comparison and the peak value error is seen
to be smaller than 3%.

4. CONCLUSIONS

The dominant pole spectrum algorithm [6, 7]
was applied to obtain a reduced-order dynamic equivalent of
a network containing a frequency-dependent transmission
line modeled using the J. Marti’s setup of the EMTP
(FDLINE).

One of the contributions of this paper is to
present a block diagram (Figure 2) for the 2x2 transfer
function matrix representing the transmission line model.
This block diagram clearly shows the interdependencies
among the variables of interest and leads fo a simple state
space realization.

Frequency and time responses of a test system
containing Iumped RLC parameters and one transmission
line with frequency-dependent parameters were obtained
with the EMTP program and compared with those of the
reduced-order model. The complete system model has 106
state variables, 102 of those due to the frequency-dependent
line model. Note, however, that only 12 poles were
maintained in the reduced-order model.

This 12" order model is shown to be fairly
accurate in both frequency and time domain and could be
used as an equivalent of the system in electromagnetic
transient analysis. The fitting of the reduced order model can
be further improved by the inclusion of other sub-dominant
transfer function poles.

Although the results presented were based on
the FDLINE maodel [1, 8], the same technique can be applied
to any line model based on rational approximations of the
frequency-dependent parameters [4, 9, 14].

The technique described here can be readily
extended for multi-phase systems. Work along this line is
under way and will be reported in the near future.
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