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Abstract — The use of the Wavelet theory as a
decomposition and composition tool in signal
processing applications has proved to be efficient.
However, the decomposition of a transient signal in
Power Systems will only be useful if, due this
decomposition, a safe decision can be made. The
objective of this work is to evaluate the performance of
the Wavelet theory in the detection and localization of
transient phenomena.
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I. INTRODUCTION

In an ideal Power System the voltage and current
signals must present purely sinusoidal wave forms.
However, modern electrical systems are characterized by
presenting, distorted wave forms of the voltage and/or
current. Traditionally, these distortions are studied by
Fourier theory. Fourier theory is a powerful mathematical
tool but, can only be used with success if the distortions
are stationary [1]. Most physical phenomena nevertheless,
create non-stationary distortions, where periodicity does
not exist.

Recently, a new technique was suggested to deal
with non-stationary distortions in Power Systems: Wavelet
theory [1]. In this work, the author says that this new
theory can in the near future become an efficient and
powerful tool for identification and analysis of several
types of non-stationary distortions, such as atmospheric
surges, capacitor bank switching, etc.. Currently, the
literature indicates that applications of Wavelet theory to
Power Systems are still in an investigative phase. This
work evaluates the performance of Wavelet theory,
particularly the method proposed by [2], for the detection
and localization of transients.

II. WAVELET THEORY
The fundamental idea in Wavelet theory is the

scaling operation. Scaling renders possible the
compression and dilation of a function called the mother
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wavelet. Informally, a mother wavelet /(?) is a function

that oscillates, has finite energy and zero mean value. The
scaling mother wavelet, when translated in the time,
creates daughter wavelets.

Mathematically, Wavelet theory results in an
operation that decomposes a function x(?) into a wavelet
get. The Continuous Wavelet Transform (CWT) is then:

W (ab)~—1—+fox(r)w‘(ﬂ)dr (1
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where, a (scale) and b (translation) belong to the Real set;
a#0 and “*” denotes the complex conjugate. The scale a
corresponds to the inverse of the frequency.

The Continuous Wavelet Transform has great
theoretical interest, especially for the development and
comprehension of its mathematical properties. But its
discretization is necessary for practical applications.

In the Discrete Wavelet Transform, only the
parameters of the transform are discretizated. One typical
discretization is: a=a7 and b=na)'b,, with m and n

belonging to the Integer set, a, )1 and b, #0 [3].

The discretization process leads to the Discrete Wavelet
Transform (DWT):
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For Time Discrete Systems, it has the Time Discrete
Wavelet Series (TDWS) given by:

WW (m,n)= e
m f=— m
a, = a,

If the purpose of the discretization process is to
eliminate the redundancy of the continuous form and to

_ensure inversion, then the choice of a, and b, must be

made so that the daughter wavelets form an orthonormal
basis [4]. This condition is satisfied, for example if
a,=2 and b, =23].
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III. MULTIRESOLUTION ANALYSIS

The Wavelet method decomposes a signal at
different scales or resolutions. This multiresolution
decomposition is the essence of Wavelet theory.

In Multiresolution Analysis [5], the mother wavelet
function /(%) is defined via a function g(t), called the

scaling function. The daughter wavelets form an
orthonormal basis only if an appropriate choice of the
function ¢t is made. According to [6], this choice is
made so that there exists a squared summable sequence
{e,} such that:

+00
p=2 3 c gt-n .

Hn=—0

Equation (4) is the fundamental equation of the
Multiresolution Analysis. Using this equation, the mother
wavelet function is defined as follows:

o0
wt)=2 Td, 42 -n) )

n=—00

where the sequence {d,} is squared summable.

The structure of Multiresolution Analysis with the
application of a recurrent algorithm was utilized by [7] to
construct orthonormal wavelet sets. This work uses the
DAUB4 wavelet, which is the simplest and most localized
member of these sets. This gives the desired time
localization.

IV. THE MULTIRESOLUTION WAVELET METHOD

Using the structure of Multiresolution Analysis, the
Time Discrete Wavelet Series can be calculated. In this
case, it was decided to call it the Multiresolution Wavelet
Method (MWM) [8].

Schematically, it has the follow structure (Fig. 1
and 2):

e €
— TDWS TDWS [—*
x(m) l l
Wi w2

Fig. 1. MWM structure

Due to the dizimation process of the method (Fig,
2), if the signal x(n) has N samples, the signals e; and w;
will have only N/2 samples each in the same interval of
time, and similarly for other stages.

TDWS BLOCK

OUTPUT FOR
THE NEXT STAGE

WAVELET COEFFICIENTS

Fig. 2. One stage of the MWM

In the context of Signal Processing, the sequences
{c, } and {d, } are considered as being the two conjugate
quadrature filter channels (CQF). The filter ¢, is a low-
pass filter and the filter 4, is a high-pass filter.

The resulting signal from ¢, (e,) is a smoothed
version of the original signal, and the resulting signal
from d, (w,) is a detailed version of the original signal,
which corresponds to the wavelet coefficients.

V. COMPUTATIONAL IMPLEMENTATION OF
MULTIRESOLUTION WAVELET METHOD

For computer implementation of MWM, the
wavelet subroutines WT1 and DAUB4 were used [9].
These subroutines, when implemented, provide the
wavelet coefficients, or the inverse operation, of the
original signal. The DAUB4 subroutine executes the
DAUB4 wavelet, which according to [2] is the most
adequate for the detection and localization of disturbances.
The scaling used was the dilation of the mother wavelet.

VI. VALUATION OF THE PERFORMANCE OF THE
MULTIRESOLUTON WAVELET METHOD

To evaluate the performance of the MWM, vectors
were used to represent the electrical signals, which had
size N=1024. It was adopted: &, initial phase of the signal
and &, relative position of the disturbance in the signal.

A. Performance of the MWM in the detection and
localization of disturbances

In order to perform this evaluation, the signals
showed in the Figs. 3a and 4a were simulated. The MWM
decomposes these signals into their detailed and smooth
representation. The detailed representation (output of the
filter d,,) contains the higher frequency components of the
signal because d, is a high-pass filter. So the disturbances
present in the signals are detected in this representation.
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Fig. 3. Multiresolution Wavelet Method.
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Fig. 4. Multiresolution Wavelet Method.
(a) voltage signal (b) scale 1

Each spike in the detailed representation (wavelet
coefficients) corresponds to the disturbances present in the
signal. The spike at the end of the signal is “seen” by the
MWM as a transient [10].

Each stage of the MWM corresponds to a scale. Fig,
3b shows scales 1 and 2, and Fig. 4b shows scale 1. The
fast and short transient disturbances are detected at scale
1, because the DAUB4 wavelet is most localized in time.
The slow and long transient disturbances will be detected
at higher scales, because the DAUB4 wavelet becomes less
localized in time.

With regard to Fig. 3b, it can be observed that the
slowest disturbance has the greatest value at second scale.
However, it is not possible to say “absolutely” what the
type of disturbance is.

So, the Figs. 3b and 4b show the excellent
performance of the MWM in the detection and location of
fast disturbances present in the signal. According to [8],
the MWM is a powerful tool for the detection and location
of fast and short transient disturbances.

B. Performance of the MWM with the variation of 0

To evaluate the performance of the MWM with the
variation of &, a base signal (sinusoidal of 60 Hz and
110V of amplitude) was used, to which was applied a
spike of 10V of amplitude (Figs. 5a and 5b). In these
figures, only the first scale is shown.

These figures show clearly the sensitivity of the
MWM to the “windowing” applied to the signal: the
MWM presents wavelet coefficients with different values
to the same disturbance. This fact is a problem of the step
of the method ([11] and [12]). This phenomenon of the
method is named sensitivity to translations, that is, the
wavelet coefficients of two signals may be quite different
if two signals just differ by a time shift. This is one
drawback of the method, but it can be by-passed.
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Fig. 5. Multiresolution Wavelet Method.
(a) 6=0°, 8=120° (b) 6=30°, 6=120°

C. Performance of the MWM with the variation of &

Here, the same signals as item B were used, but
now the spike was translated in the signal (Figs. 6a and
6b).

As it was shown in the previous case, the MWM is
sensitive to the location of the disturbance in the signal:
the MWM presents wavelet coefficients with different
values to the same disturbance.

Therefore, except for this inconvenience, Figs. 6a
and 6b show the detection and localization in the time of
the disturbances present in the signal.
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Fig. 6. Multiresolution Wavelet Method.
(a) 6=0°, 6=30° (b) 6=0°, 5=40°

D. Performance of the MWM in the reconstruction of
signals

To evaluate the performance of the MWM in the
reconstruction of signals, the squared wave function was
used. The Fig. 7a illustrates the original function and the
Fig. 7b illustrates the reconstructed function by MWM.
The mean-squared error between the original function and
the reconstructed one by MWM was calculated. The value
obtained was equal to 7.8x10.

In this way, the efficiency of the MWM in the
reconstruction of signals was proved. The MWM can thus
be used in the reconstruction of stationary power system
disturbances too.
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Fig. 7. (a) Squared Wave Function.
(b) Reconstructed function by MWM.

VII. APPLICATION OF THE MULTIRESOLUTION
WAVELET METHOD TO REAL MEASUREMENTS

The measurements utilized in this section were
supplied by Companhia Energética de S3o Paulo (CESP),
one of the electrical supply companies of Sao Paulo State.
To apply the MWM to the measurements, vectors with
1024 samples were used. According to [2], the squared
wavelet coefficients were used, in order to reduce the
effect of the present noise in the real electrical signals.

A . Fusion time of the fuses (Fig. 8)

This test determines the fusion time of the fuses of a
monopolar automatic switch. The Fig. 9a represents the
voltage in the switch during the test and the Fig. b,
illustrates its wavelet coefficients up tol fourth scale.

>
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Fig. 8. Fusion time of the fusibles
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Fig. 9. (a) Voltage in the switch of the Fig,. 8
(b) Multiresolution Wavelet Method

The efficiency of the MWM is observed in the
detection of the beginning (around 0.025 ms) and end
(around 0.055 ms) of the fusion (Fig. 9b). The fast
variations (beginning and end of the fusion process) are
detected in the first and second scales and the slow
variations, in the third and forth scales.
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Note that the wavelet coefficients relating to the
beginning and end of the fusion (fast transient
disturbance) persist at the same temporal location over
scales 1, 2, and 3, according to [2].

B. Transient in a voltage signal (Fig. 10a)

The Fig. 10a shows a voltage signal with a fast
transient around 0.027 ms, which can be easily seen in the
first scale and its propagation until the third scale.
Another transient around 0.03 ms can be seen in first
scale but, with smaller intensity. The slowest variations
are only detected after the third scale.

Note that the MWM detects the fast disturbances at
scales 1 and 2 and the slow disturbances, at scales 3 and 4.
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Fig.10. (2) Transient signal
(b) Multiresolution Wavelet Method

C. Reenergization of one 13,8 kV circuit to supply ground
return monophasic loads (Fig. 11)

The reenergization voltage with its wavelet
coefficients are shown in the Figs. 12a and 12b.
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Fig. 11. Reenergization of circuit
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Fig, 12. (a) Reenergization voltage
(b) Multiresolution Wavelet Method

The reenergization time can be seen in the first
scale, around 0.03ms. As the signal doesn’t show any
other disturbances, only the coefficients relating to the
reenergization time can be seen in the figures previously
cited.

Note that the wavelet coefficients of the
reenergization instant persist at the same temporal
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location over all scales. Observe that the end of the signal
is seen as transient.

VIII. CONCLUSIONS

Since the proposal of utilization of the Wavelet
Theory in Power Systems is still recent, we tried to initiate
the exploration of its potential in this work. In this way,
based on the results shown in this work, we can conclude:
1. The MWM is a useful tool to detect the occurrence of
abrupt variations in wave forms in the time domain.

2. The efficiency of the MWM in the analysis and
synthesis of signals was confirmed.

3. The MWM is sensitive to “windowing™ made in the
signal and sensitive to location of the disturbance in the
signal. Therefore, in order to use the MWM to
disturbances classification, modifications in this method
should be made.

4. The meaning of the magnitude of the scales is still not
clear. The B and C cases of item VI, show the variation of
the values of the wavelet coefficients for the same signal
with the same disturbance.

In Power Systems, some disturbances and/or
transients must be detected through signal decomposition.
Disturbance detection is important for edequate the system
operation. For example, of protection, active filters, etc..
So, decomposition cannot be allowed to lead to false
diagnoses. If this happens, serious damage can occur to
the system. So a clear conception of the scale magnitudes
is needed.
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