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ABSTRACT:

The most simple breaker model used in transient analysis
studies is an ideal switch. Such a model can be acceptably
used for transient recovery voltage studies, but fails to recog-
nize the interaction between the breaker arc and the surround-
ing electrical network. A detailed arc model is required to
evaluate the interrupting capacity of a breaker and its influ-
ence on the current waveform. This paper presents the imple-
mentation of a detailed arc model in the EMTP.
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linear functions, EMTP

1. INTRODUCTION

The usual breaker model used in transient analysis is an
ideal switch which is allowed to open at current crossing zero
and may inciude a current margin parameter used for an
approximate representation of possible current chopping.
Such a model is applicable in studies where the interaction
between the breaker arc and the surrounding network can be
neglected. In other studies, where it is needed to evaluate the
interrupting capacity of a breaker and its influence on the
interrupted current, a detailed arc model must be used. A typi-
cal case which illastrates the crucial importance of arc model-
ing, is shown in Fig. 1. This test case is taken from a Hydro-
Québec 735 kV series-compensated network study. The short-
circuit current Iso is a line breaker current for a fault applied
near a capacitor bank at the remote end of the line. It appears
that a sufficiently high arc voltage can force the interrupted
current to cross zero earlier than with an ideal switch model.
With the ideal switch model the current crosses zero after
113 ms compared to only 63 ms when the air-blast breaker arc
model is used. The registered arcing time is of crucial impor-
tance for assessing the arc quenching capability of a given
breaker type.

A previous paper [1] has presented the practical aspects of
experimental and numerical. studies undertaken at Hydro-
Québec to warrant the breaking ability of in service air-blast
breakers and to correctly specify the performance require-
ments of modern technology SF, breakers. The numerical
studies in [1] were based on a new arc model available in the
next official release of thé Electromagnetic Transients Pro-
gram (EMTP DCG-EPRI version 'V3), This paper presents the
detailed implementation of the new arc model: the numericat
method applied in the simultaneous solution of electrical net-
work and arc equations.

The challenge is the solution of the highly nonlinear Avdo-
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nin arc equation (2] with experimentally derived air-blast or
SFg parameters. The solution method maust attain convergence
within the fixed integration time-step constraint of EMTP and
possible numerical overflow conditions of the arc resistance
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Figure 1: EMTP simulation, breaker current with
breaker arc and ideal switch models

A previous solution attempt [3] employed a fixed-point
method with predictions on both arc voltage and current. Such
a method by nature, has poor convergence properties and
requires increased comnputer time. The approach proposed in
this paper is based on a Newton method and uses a polyno-
mial predictor for the arc resistance at each iterative time-loop
solution. Practical cases are used to demonstrate convergence
properties and the importance of the predictor order. The pre-
sented method is applicable to other arc model equations such
as Urbanek and Kopplin which have been also implemented
using similar solution algorithms in EMTP-V3.

2. SOLUTION METHOD
2.2 The arc model

The time sequence of events during the opening process in
a circuit breaker is shown in Fig. 2. The initial contact parting
action is followed by the nonlinear arc equation zone entered
near current zero. The Ty, parameter is based on a signal that
can be manually predicted at simulation startup or connected
to an EMTP TACS (Transient Analysis of Control Systems)
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device such as a relay model.
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Figure 2: Opening sequence in a circuit breaker

The nonlinear arc equation used for modeling air-blast and
SFg breakers is the Avdonin arc equation [2]:

dr p o T 1-c—p
—2=8_ _vyij -2 (D
dt A AB
which is derived from the modified Mayr model:
dr, _Lif; Yala @)
dt e P,
where:
6= A_I'aa‘ PO = BraB 3

The variables 1, , v, and ia are the arc resistance (ochms),
voltage (V) and current (A) respectively. © is the arc time

constant (s) and PO is the breaker cooling power. Parameters

for this model can be derived from laboratory tests [4]. A typ-
ical air-blast breaker has a slower time constant than the sin-
gle-pressure SF, breaker. Equation (1) can be used to
represent thermal failure near current interruption and conduc-
tivity in the post-arc region.

2b I ting 1 el into ti tworl i

This section presents the programmed solution method
and its calibration for solving the most severe convergence
problems encountered with nonlinear arc model cases.

A simple and straightforward appreach for modeling the
arc within an arbitrary EMTP network, is to solve equation (1)
using TACS functions. A TACS breaker module can be pro-
grammed to measure the arc current in the network and trans-
fer back the arc resistance at each simulation time-point
through a controlled current source [5]. This approach usually
requires an abnormally small integration time-step At and
may become numerically unstable due to the one At delay
between the solutions of network and TACS equations. It is
feasible to improve the robustness of the selution method by
inserting a TACS controlled arc resistance [4] at the breaker
nodes instead of the controlled current source, but the only
way to obtain a simultaneous and numerically robust solution
between arc and network equations is to resort to hard-coding

in the nonlinear branch representation algorithms of the
EMTP.

It is feasible to implement a simultaneous solution
between an arbitrary network and nonlinear branch equations
through the EMTP compensation interface. This interface was
previously available only to program developers, but has been
made available to program users in the latest program release.

The idea of the compensation method is very simple, It is
based on finding the network Thevenin equivalent looking
back into given network nodes:

Vin —RumIy =V, @)
Bold characters are used to denote matrices and vectors.
Vth is the vector of Thevenin voltages, Rﬂ1 is the Thevenin
resistance matrix, I¢, is the vector of nonlinear branch cur-
rents and V¢ is the vector of nonlinear branch voltages.
Iq, and Vq, are related through nonlinear functions. This is a
multiphase equation and can account for the simultaneous
presence of several nonlinear functions in a subnetwork.

If for demonstration purposes, the only nonlinear element
present in a subnetwork is an arc model, then equation (4} can
be reduced to its scalar form:

Vth _Rthla =V, (5)
The number of breaks per breaker pole (ny,) is included
assuming that V, = n,v,.

The trapezoidal methed of integration provides the solu-
tion of (1) at the simulation time-point t:

At[dr,|  dr,
Ak P e R ©
Contrary to indications in [3] there is no need to treat I, , V,

Iy

~and 1, separately, since i, =V, /T, equation (1) can be

rewritten as:
dra| T " B G
al, A ™ AB
In order to find a simultaneous solution, the combination of
equations (5) to (7) must be solved through an iterative pro-
cess.

If a fixed-point method is used, then the iterative proce-
dure at time t, starts with a prediction fat of I, followed by
an iterative loop where equations (5), (/) and (6) are called in
succession until convergence. A first order predictor such as:

n dr, ‘
P +At€t N (8)

can be implemented. But a fixed-point method has inherent
limitations: slow convergence and no guarantee of conver-
gence even with the best initial guess, Due to the extremely
nonlinear nature of (7), the usage of such a method will aiso
require an unnecessary small At.

A better approach is to use a Newton method for solving
the nenlinear system of equations (5)-(7). In addition to qua-
dratic convergence speed, there is a guarantee of convergence
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when the initial guess is sufficiently close to the solution.

The Newton formulation for solving (5) is given by:
-1

r, 0 =y, O df () O
ay l'a;(j)
with:
f(r, )= (10)
1- -
L +r +£ Tay a_ 2 Ty B_*_d-ra‘
At ol A M AR dt]_g

found from the combination of (6) and (7). The arc voltage at
each iteration is found from (5):

. . . -1
va:u) = Vthrat("])[nbratﬂ) +Rm] (11)

The predictor of (8) is acceptable for most simulation
cases, but experimenting with practical cases suggests the
usage of a higher order predictor more appropriate for the
highly nonlinear nature of (7). It is chosen to apply a fourth
order Adams Bashforth predictor given by:

~

l'at =

+37ra: 3AL 9r3t-4m]

. (12)
It is selected for its simplicity and requires the recursive
updating of only 3 more terms. This predictor achieves faster
convergence specially for large arc resistance excursions, and
the largest possible time-step usage for a large set of test
cases. Moreover, poor prediction may cancel the ﬁndmg of an
existing solution.

The fast increase of arc resistance near arc extinction,
requires the implementation of numerical overflow tests. The
preset bounds will affect convergence propertics and partly
defeat the purpose of computing derivatives. This is why the
first detection of nonconverging or osciliatory Newton solu-
tion is followed by the implementation of the previously dis-
cussed fixed-point method. It is possible that a fast arc
resistance rise does not end up in arc extinction and restrike
conditions may also exist.

The final implementation is a combination of Newton and
fixed-point methods where the fixed- -point method is switched
on only when the Newton method encounters convergence
problems.

The proposed solution method remains compatible with
the solution of other nonlinear functions in the EMTP and
mixing of nonlinearities is feasible through the general equa-
tion (4). A simple algorithm is achieved by replacing Vy;, by
Vth in equatlon (11). If there is a total of n nonlinear func-
tions then for a given ith arc model Vr.h is found from:

Tap_ae T [55 a-Ar rat—-ZAt

n
s ()= - )]
Vthi(J)_Z[Vlhi Ring Lok ] (13)
k=1
ksti
Equation (4) can be viewed as a linearized circuit where the
arc model contributes a resistance value at each iteration.

According to (13) and (9) the iteration numbers are not syn-

chronized when there is more than one nonlinear branch in a

subnetwork, this now constitutes a quasi-Newton solution for
multiple nonlinearities,

3, SIMULATION EXAMPLES

The following test cases are selected to demonstrate the
advantages and capabilities of the previously presented solu-
tion method.

3.a TestCasel

The first test case is taken from a 735 kV reactor isolation
study. The diagram of the studied circuit is shown in Fig. 3.
The network equivalent is for the 735 kV network connected
to the substation where the reactor is being switched off. It is
composed of a short-circuit inductance and an RC branch for
TRV representation. The breaker is connected between two
very short line sections simply modeled with pi sections. The
reactor is modeled to match its natural frequency with a para-
sitic capacitor and a large damping resistor.

neitwork
equivalent

reactor

short line E shoert line

+ breaker

1|H
I

Figure 3: 735 kV reactor isolation study with a detailed
arc model

The breaker model parameters are chosen for the SF case.
The integration time-step is 1 pus. Contact parting time is
manually set to occur at t={) and the complete network is ini-
tialized with a 60 Hz solution with the breaker in its closed
position. The arc current and resistance are presented in Fig. 4
and Fig. 5 respectively. These simulation results have been
checked against measurements [7]. Resistance instability
occurs around the current chopping. Such an instability justi-
fies the search for the exact solution, even if preset bounds
may be called in at a given iteration, the final solution can be a
resistance lower than the computer representation of infinity.
At =017 ms the arc resistance jumps from 1000 Q to infin-
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ity and the proposed method automatically switches from
Newton to fixed-poiat to unable convergence. The mean num-
ber of iterations is 2.3 when the high order predictor of equa-
tion (12} 1s used.

If the same arc model is programmed using TACS with a
TACS controlled arc resistance, then it requires 200 times the
computer time of the proposed solution method. This large
ratio is partly due to the requirement of a 100 times smaller
time-step in TACS to remain stable.

If the fixed-point method is set to remain on throughout
the entire simulation, then the mean number of iterations
jumps to 30 and the computer time doubles. The programming
of the Newton method is more complex and cancels some of
its convergence speed advaniages.

arc current
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Figure 4: Simulation of breaker current with the new arc
model, test case of Fig. 3
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Figure 5: Simulation of breaker resistance with the new
arc model, test case of Fig. 3

3.b Testcase2

This test case uses the test circuit of Fig. 6. It is a direct
test circuit [1] Fig. 6for generating delayed current zero condi-
tions in the short-circuit current. Circuit parameters are set to

reproduce in-network conditions for the Hydro-Québec series
compensated network. The tested breaker is TB and auxiliary
breakers AB, and AB, are closed in an appropriate sequence
for reducing the ac component of the short-circuit current
while maintaining its dc component.

The variaticns of the arc resistance are shown in Fig. 7 for
a contact parting time of 43 ms till interruption at 80 ms. In
this test case the fixed-point method cannot find a solution
with the integration time-step used for the Newton method.
The high-order predictor of equation (12) is able to maintain
the mean number of iterations close to 1 throughout the varia-
tions in arc resistance shown in Fig. 7 and the fixed-point
method is never needed. It is again noticed that the fast varia-
tions in the arc resistance do not always end up in arc extinc-
tion and the solution search must stay on even if preset bounds
are hit. Experimental validation for this case can be found in
{1].

The computer time gain compared to the predictor of
equation (8) is 1.5 times. This is ot a major gain, but the
imporstance of the predictor becomes dramatic when it can
achieve convergence in cases where a lower order predictor
fails. Such cases are found when simulating the detailed net-
work with transmission lines as in the introductory case of
Fig. 1.

Figure 6: Test circuit used for creating delayed short-
circuit current zero conditions
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Figure 7: Arc resistance in a successful current
interruption case with an air-blast breaker
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4. CONCLUSIONS

This paper has presented the numerical implementation of
the new EMTP arc model. The solution method is a simulta-
neous solution of linear network equations with the nonlinear
arc model. The Newton method is started with a high-order
predictor and allowed to switch to a fixed-point solution near
arc extinction or when the Newton iterations cannot converge.
Practical simulation cases impose the above adjustments to
unable convergence in worst conditions with a maximized
integration time-step.

The presented approach was used for solving the particular
case of the arc equation, but shown new ideas can be also
cxploited in other nonlinear model solution problems in the
EMTP.
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