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Abstract This paper presents a time domain model of an
electric power system for the purpose of studying voltage
magnitude variations due to the operation of an arc furnace. The
time domain model of the arc consists of the nonlinear
characteristics of the arc and the associated absorbed energy.
The rms value of the voltage can be computed anywhere in the
system. The voltage variation is compared to flicker threshold
values as defined in standards. Typical results in a test system
are presented in the paper.

1. Introduction

Operation of nonlinear loads cause distortion of the sinusoidal
waveform of the voltage and current which are quantified with
harmonics. If the nonlinear load is also varying with time, as is
the case of arc furnace loads, the rms value of the electric load is
also varying. Lighting, which is affected by the voltage
variations, may flicker which cause a certain degree . of
unpleasantness. This phenomenon has been known since the
early days of power systems. Advances in power system
technology and interconnections resulted in large power systems
and the minimization of flicker type behaviour of a power
system.

2. Modeling of Power System Devices

Models of power system elements are derived in direct phase
quantities (a, b, ¢, and n (neutral} for three phase neutrals or LI,
L2 and NN (neutral) for secondary service systems). The
modeling procedure starts from a set of algebraic-differential-
integral equations which describe a power system element.
These equations are transformed into (a) a quadratic state space
model or (b) a quadratic frequency domain model. These
models are used to obtain the overall network solution with a
Newton type algorithm. Details of the model and network
solution are presented next followed by examples.

2.1 Time Domain Device Model

Any power system device is described with a set of algebraic-
differential-integral equations. It is always possible to cast these
equations in the following general form:
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where i: vector of terminal currents,
v : vector of terminal voltages,
y : vector of device internal state variables

u : vector of independent controls,

Note that this form includes two sets of equations which are
named exfernal equations and internal equations respectively. The
terminal currents appear only in the external equations.
Similarly, the device states consist of two sets: exfernal states (i.e.
terminal voltages, v(t) ) and infernal states ( i.e. y(t) ). The set of
equations (1) is consistent in the sense that the number of
external states and the number of internal equations equals the
number of external and internal equations respectively,

Equations (1) are integrated using a suitable numerical
integration method. Assuming an integration time step h,
the result of the integration is approximated with a second
order equation of the form:
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where bi(i-h), ba(t-h) are past history functions.

2.3 Example: Arc Model

The arc model consists of a nonlinear relationship between the
arc current and arc voltage, i.e.

i) = ka{v(8)/ Vo) + ka(v(t)/ ver) 2

where i{t) is the arc current
v(t) is the arc voltage
k1, o, ko, oz, ver,and vo; are model parameters

3. Network Solution

The network solution is obtained by application of Kirchoff's
current law at each node of the system. This procedure results in
the set of equations (3). To these equations, the internal
equations are appended resulting to the following set of
equations.

ZAkik(t)=linj - 3
k
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internal equations of all devices 4

where I . is a vector of nodal current injections, AK is a
component incidence matrix with:

{A;. } =1, if terminal j of component k is connected to node i

= (), otherwise

i*(1) are the terminal currents of component k.

The component k terminal voltage vk(t) is related to the nodal
voltage vector v(t} by:

vE=(a")Tvw) {5)

Upon substitution of device equations (2), the set of equations (3)
and (4) become a set of quadratic equations. These equations are
solved using Newton's method. Specifically, the solution is
given by the following expression.
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where :
vo(t),yo(t) are the values of the state variables at the previous
iteration, BP,BY represents the mismatch of the system

equations of the previous iteration, and 1 is a column vector with
all entries equal to 1.

Note that at each time step, the quadratic device model is an
approximation of the nonlinear device equations. For this
reason, the above procedure utilizes an iterative algorithm which
is applied at each time step. The algorithm is illustrated in
Figure 1.

4. Applications

The proposed method has been applied to an example power
systems with an arc furnace. The single line diagram of the
system is illustrated in Figure 2. For this system we compare the
harmonics and flicker at BUS10, BUS20, and BUS30. The
computed flicker is compared to the allowable limits as
described in [13]. For convenience the permissible flicker curves
are presented in Figure 3.

Figure 4 illustrates the time wavform and the rms value (over a
sliding window of 16.6667 mseconds) of the voltage at buses
BUS20 and BUS30 (see Figure 2). Figure 5 illustrates the rms
values of the voltages at the three buses of the system {BUS20,
BUS30 and BUS32KV) as well as the variation of the electric real
power absorbed by the furnace. Note that the power varies with
a frequency of 5 Hz. The maximum power is 18.3 MW per phase

and the minimum is 13.1 MW per phase. Note that in the model
we can simulate any variation of the arc power, including
random variations. However, for the simulation shown we
elected to use a periodic variation with frequency 5 Hz. The rms
values of the voltages vary in the ranges (61.2-64.3 kV), (58.8-62.7
kV) and (15.5-17.0 kV) for the buses BUS20, BUS30 and BUS32KV
respectively. The percentage variations are 4.06, 6.63 and 9.68%
respectively. It is important to note that the rms value of the
voltage variation is high near the furnace and decreases for buses
further away from the furnace. This is to be expected in a system
that does not have capacitor banks. In systems with capacitor
banks, however, the voltage variation profile may be different.
With reference to Figure 3, the computed voltage variations will
be noticed as flicker above the threshold of perception (at 5 Hz
the threshold of perception is about 1.3%).

5. Summary and Conclusions

A time domain model for computing flicker due to changing
electric loads, such as eleciric furnace loads, has been presented.
The model is based on a quadratic equivalent representation of
each element in the system and subsequent simultaneous
solution of all equations. When there are nonlinear elements,
such as an eleciric furnace, this approach vields a method with
quadratic convergence characteristics. The result is an accurate
and efficient computational method. The solution provides the
waveforms of voltages and currents anywhere in the system.
From the waveforms, any other desirable quantity can be
computed such as rms values, real power, reactive power,
distortion power, etc. Typical results have been presented in the
paper. Our experience with this method indicates that the use of
quadratic equivalent representation for each element of the
system results in a robust real time simulation method.
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