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Abstract-This paper is concerned with a new approach for fault
detection, direction discrimination, fault type classification and
faulted phase selection, based on Artificial Neural Network
(ANN), to be used for transmission line ultra-high speed (UHS)
protection. The proposed approach is based on a 3-level
hierarchical neural network structure, where the normalized
fault induced transients in the instantaneous phase currents
andfer voltages at the relaying point are to be fed, Compared to
other architectures, this structure would have a high learning
ability and accordingly a higher recall accuracy. The approach
is tested using the Electromagnetic Transients Program
(EMTP) to generate current and voltage samples at the relaying
point for the study system. The training and testing resuits
indicate the high speed and selectivity of the approach as well
as the inherent adaptive feature.

Keywords: fault induced transients-directional protection -
faulted phase selection - neural network.

L. INTRODUCTION

The interest in fault-initiated traveling wave-based protection
is motivated by the consideration of modern bulk EHV/UHV
transmission network with long lines [e.g. 1,9]. In these
schemes the effect of load current and high frequency
transients on the current and voltage accompanied with the
fault are reduced to a minimum.

The conventional analytical-based protection approaches are
expected to be affected by the system operating conditions.
Moreover complete faulted phase selection can not be
achieved through these conventional approaches [1}. The
Artificial Neural Network (ANN) provides a viable
alternative because they can handle most situations which are
not defined sufficiently for deterministic algorithms to
execute. Beside enjoying the advantages which are inherent
in ANNSs, ( such as excellent noise immunity, robustness, etc.
[3]), the protection scheme based on ANN would not be
affected by changes in system operating conditions [4-7].

The objective of this paper is directed towards developing a
new scheme based on ANN to be used for transmission lines
fault detection, direction discrimination, fault classification
and faulted phase selection, based on a narrow window of
less than one fourth of the power frequency cycle. Instead of
using the full values of voltages and currents as shown in [4-
7], the proposed approach utilizes the normalized changes of
the phase voltages and phase currents resulting from the
fault induced transients. Compared to other schemes, this

would lead to inherent adaptive feature for the proposed
approach. Moreover, the use of the changes of currents and
voltages would reduce the effect of fault resistance on the
capability of the approach.

II. FAULT INDUCED TRANSIENTS-BASED
DIRECTIONAL RELAYING SCHEME

The inception of a fault in a transmission line will cause the
post fault voltage “vg“ and current “ig” at the relaying point
to deviate from the steady state prefanlt voitage and current
“VlR” and “i'g” respectively, as shown in Fig. 1 (single-phase,
lossless T.L.). With a fault at “F”, the forward and backward
traveling waves (Av(x,t) and Ai(x,t)) associated with the
superimposed voltage and current quantities can be written as

(1.9
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Fig. 1 a) Principle of Superposition

b) Traveling Wave Propagation for Forward Fault

412

IPST '97 — International Conference on Power Systems Transients
Seattle, June 22-26, 1997



where f, and f, are the foreword and backward traveling
waves deviations resulting from fault inception as shown in
Fig. Lb, Z is the surge impedance and “a” is the propagation
velocity.

Assume that the voltage and the line current changes
produced by the fault at the fault point “F” are v; and iy , we
can write

V(1) TZ igg (1) = Avg(ttty) - Z A ig (t41y) €))]

[{9rT

where “t™ is the travel time between “F” and the point
reflection “P”, “1," between “F” and “R” and “1," for “F-R-
P-R” as shown in Fig. 1.b. Assuming a prefault voltage at
“F”, v'p, where

Ve=VmV2 sin(et+d) @)

then, according to equation (3)the wave characteristic seen
by substation “R” is

Avg(t+t) - Z A ig(ter) = - Voo, V2 sin(ot+9)  (5)
for0 <t <21.

This composite-termination-independent  expression is
observable at “R” from “1,” to “27+1,”, (1st. incidence +1st.
reflection + 2nd. incidence), However, after that time
reflection from the fault location will change it.

It shouid be noted here that f, could be detected at “R” within
the time span “1,” to “2v+t,“ from fault inception, i.e. after or
within detecting f;, and its value

=1, fort<2z (6)

where r, is a reflection coefficient.
A. Highly reliable discriminant function

The forward wave characteristics in equation (5) is
independent of termination but it does depend on the fault
inception angle ¢. For ¢ = 0.0 the characteristic magnitude
becomes a ramp function 2V /2 sin (ot) which would be
difficult to detect within the observable time span 2t if T <<
T, where T is the period of the power frequency. The problem
is avoided by using the the wave characteristic (5) in
combination with its derivative to form the expression:

De = (Avg - Z A ip)* + 1/o® (d/dt (Avg - Z A ip)%)

=8V, Q]

for 1, <t <2 1t + 1, and is independent of the angle of the
fault inception. This signal Dy is observable at R from T, to 1,
+ 2t and represents the traveling wave discriminant used to
identify fault condition on the line, The magnitude of Dg is
zero (except for noise) on a healthy line and is extremely high
(8 V* ;) on a faulted line in the interval T, <t <2t +1,.

Based on the previous analysis, the fault detection, direction
discrimination, fault classification and faulted phase selection
can be explicitly derived from information contained in fault

induced transients of the three phase voltages and currents ({
Avyp, Avg, Ave) and { Adp, A iB, & ic}) [1]. These
transients can be incorporated in two diseriminate finctions
(Dp and Dp) based on the modal transform as shown by (8)
and (9):

Dp(k) = (avp®) - 2K 4 ip (k)2

2
1(d 3
+oeed - (Avg® K aig® (8)
mzk dt
DR = (Avg(® + K A ig ()2
2
1(d 3
ed e (avg® K A ig® ) ©
@y k dt J

for mode-k, where ZK is the mode- k surge impedance, and A

vp) and A iR(k) are the mode- k superimposing voltage and
current respectively at the relay point.

These modal transform-based discriminant functions are
incorporated in a way to achieve a directional relaying
approach with a degree of fault classification and faulted-
phase selection. This kind of patlern classification problem
can be handled very well by ANNs.

1. ANN-BASED UHS RELAYING APPROACH
A- ANN - background

An ANN is made up of simple and highly interconnected
elements, called neurons, which process information by its
dynamic state response to external nodes. One of the
operations that a neural network can be made to do is the
pattern recognition and classification. This feature fits well
with the problem of fault detection and diagnosis of power
systems. The multi-layer perception (MLP) has been widely
used for such application. The MLP identifies the type and
location of faults with a given set of power system conditions,
measurements, alarms, ..etc. However, it has been reported
that simple applications of MLP still have difficulties in
large-scale systems, without a sophisticated prefiltering
technique [10].

ANNs have the ability to learn from experience in the
form of training and to recognize the hidden relationships that
might exist in those training patterns. Noisy patterns ( those
with desired segments missing and/or undesired segments
added) may be recognized by a neural network that has been
trained to recall the unnoisy patterns [4]. Therefore ANNSs are
able to extract signatures of fault existence, fanlt direction,
different types of faults, as well as the faulted phase in power
transmission lines with full resolution if they are properly
trained.
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B- Structure of the proposed ANN

The proposed ANN-based approach is to achieve, ina
hierarchical mode, three protective relaying functions,
namely:

1) Fault detection and direction discrimination
2) Fault type classification, and
3) Faulted phase selection.

Fig. 2 shows the proposed hierarchical structure
comprising three levels of ANNs, where each level executes
one of the previously mentioned functions. The first level
ANN is responsible for detecting the fault and indicating its
direction ( forward or backward). The second level ANN is
devoted for fault type classification. The third level provides
faulted phase selection for each type of fault, if any. This
third level consists of three separate ANNs, each of which
selects the fanltd phase(s) for L-G, LL-G, and L-L fault
respectively. This new scheme would facilitate the training
procedure and thus would improved learnability compared to
other proposals.

Each of the used ANNs is a feedforward MLP with one
hidden Iayer. Inputs to each ANN are to be the changes in the
instantaneous values of the 3-phase voltages and 3-phase
currents from prefault conditions ( at the relaying point). This
proposed structure would lead to a high learnability for each
ANN. Moreover, it would lead to good performance for high
impedance faults.

For the first level, the network has 60 neurons in the input
layer, 30 neurons in the hidden layer and two neurons in the
output layer. The firing of the output neuron represents the
existence of the forward or the backward faults, respectively.
‘For the second level, the network has the same inputs as those
of the first level, 90 neurons in the hidden layer and four
outputs. One output would be of value “1” for the
corresponding fault type, while the others would be ‘0”. For
the third level, each network has 60 inputs, 30 neurons in the
hidden layer and three outputs. One output would be “1” for
the corresponding faulted phase(s), while the others would be
“01'}.

IV. TRAINING AND TESTING RESULTS

The EMTP program [8] is used for generating current and
voltage samples at the relaying point for the system shown in
Fig. 3. The process of feature extraction with training and
testing procedure from the generated (or recorded) voltages
and currents is shown in the flow diagram of Fig. 4. Since the
classification is actually based on the superimposed
transients and not on the power frequency components [1], no
anti-aliasing low pass filter is considered.

Assuming a sampling frequency =3kHz, each voltage or
current cycle could be sampled with 50 samples {power
frequeny=60Hz). For UHS operation, equally spaced samples
within less than one fourth of the cycle will only be

ava Ade F.0: fault detection
avk AR D: divection discrimEnation
Ave Ak BF: backward (ault
- FF: forward fault
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Fig. 2 The Proposed Hierarchical Structure
of the Developed ANN Protection Scheme

considered. Therefore, each input in the first, second, and
third leve! represents the first 10 equally spaced samples of
normalized changes in 3-phase voltages and currents out of
the available 50 samples per cycle. Fig. 4 shows the 3-phase
voltage and current waveforms for a L-G fault at 60%
distance from the relay.

A- First level: Fault direction discrimination

The network in the first level is trained using the most
common and the most severe faults (3 phase to ground and
line to ground faults respectively). The data used is extracted
from different locations of the fault occurrence (0%, 40%,
80%, 100% for the forward fault and 40% , 80% for the
backward fault). Testing of the network is performed for all
types of faults at 20% and 60% for the forward faults and at
the same two locations for the backward fault as those used in
training. The maximum recorded error for the training of the
network is found to be 0.00031 for node 1 and 0.00018 for
node 2. The maximum recorded etror for testing is found to
be 0.1736 and 0.18489 for the two nodes respectively.
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Fig. 3 A Single Circuit 500kV Study System
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EMTP simulation of diff. faults applied at diff.
locations of a T.L. study system.
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Fig. 5 3-Phase Votage and Current Waveforms for a
L-G Fault at 60% Distance T T T T

Fig. 6 and Fig. 7 show the training and testing rms errors for
the detection of forward and backward faults respectively.

Fig. 8 shows the training and learning rates for the fault Fig. 8 Training and Learning Rates for level 2
detection level. {Fault Detection)
B- Level 2: Fault classification: 60% distance from the source, while the data used for testing

. is extracted using the same fault type at 0%, 20% , and 80%

The outputs in the second level represent the four types of  gjstance. Table (1) shows the results for one of the training

faults: 3LG, LG, LLGandLL respectively. The dataused  ang testing case studies. Fig. 9 shows the training and testing
for training the ANN is extracted from the fault at 40% and rms errors for nodes 3 and 4 of the output patterns,
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Table( 1): Training and Testing Results for level 2
{ Fault Classification ).

Y P Fault Training at 40% | Training at 60% Testing at 20%
Training Errors - Hode 3 Type
Test Set Errors - Hode 3 s l i OQutput | Target Qutput Target Qutput
8.2 * -t
3LG 1 1.00001 1 0.9999 1 1.12239
e | 3LG | 0. [0.00001 | 0 -80001 0 -01313
L e O e T o 3LG_[ 0 [ 000001 | 0 -.00002 ] ~05924
° 3LG 0 0.00002 0 -00002 0 -.07668
L : LG 0 0.00001 0 -.00002 0 0.00268
ez LG 1 | 100001 1 0.95997 - 1 1.13704
LG 0 | 0.00001 0 -.00002 0 0.10103
I N I IR S B G D | 0.00001 | O -00002 0 -0.1586
“'a 5 18 15 ] 25 LLG 0 0.00002 0 -.00002 0 0.00224
Input Sequence LLG 0 0.00003 0 -000001 0 ~01843
(a) LLG 1 1.00002 1 0.69998 1 1.02442
LLG 0 0.00002 0 -.00001 0 0.00631
IC 0 | ~00008 0 0.00008 0 0.00481
LL 0 -.00011 0 0.00012 0 0.01887
B4 o e et g ey eefent —— LL 0 -00009 0 0.00009 0 0.00163
[ Training Lorore = fode 1 LL 1_| 09952 1 T.00009 T 0.97832
s Test Set Errors - Hode 4 o
a2z} - : 3
. [ o /\ Table( 2): Training and Testing Results for level 3
peal /\V/ /\\/ AN (Faulted Phase Selection)
azl Faulted Training at 20% Testing at 40%
: Phase(s)
ok : . . Target Cutput Target Output
e 5 18 15 28 25 a-g 1 0.99996 1 1.0215
Tripat Sequence b-g 0 0.00002 0 -0.02075
() cg 0 0.00003 0 -0.01241
. . . a-g 0 0.00002 0 0.0325
Fig. 9 Trz;mgg ;r;d Testing RMS Error (level 2) b-; 0 0.00002 0 0.1334
a) Node cg 1 0.99993 1 0.99514
b) Node # 4 0 0.60003 0 0.08086
for a different case study. In the latter case, the used training Z'g T 0' 5999¢ 0' 5
patterns are for fault locations at 0%, 40% and 100% , while 8 : 1 9894
the related testing is conducted for faults at 80%. It is g 0 0.00004 0 -0.03017
generally seen from the results that the accuracy is practically ab-g 1 0.99997 1 0.86967
accepted. b-c-g 0 0.00003 0 0.04866
c-a-g 0 0.00003 0 0.05296
C- Level 3: Faulted phase selection: a-b-g 0 0.00004 0 0.04538
b-c-g 0 0.00004 0 0.04809
The outputs in the third level represent faulted phase c-a-g 1 0.99998 1 0.8851
combinations (s, b, ¢), (ab, be, ca) or (abg-beg-cag), for line- a-b-g 0 0 0 0.05896
ground, line-line and line-line-ground respectively. The data b-c-g 1 0.99994 1 0.87224
used for iraining is extracted from the fault at 20% distance c-a-g 0 -0.00001 0 0.06034
from the source, while the data used for testing is extracted a-b 1 0.09995 1 0.87915
f;;om the 40% location. Table (2) shows the results for the bc 0 -0.00001 0 0.05686
three cases.
c-a 0 -0.00001 0 005316
The. output testing results for each level show small ab 0 0.00003 0 0.06219
ﬂ'uctuatlons in the actual ANN out;?uts around one and_ ZEero b-c 0 0.00003 0 0.05657
(in .the range of 0.2 or less) which can t.be.pract[cally oz 1 0.99999 1 0.86868
avoided. A small threshold level can be built inthe ANN P 0 0.00001 0 0.06294
algorithm in order to minimize the degree of uncertainty. o 1 0.99993 I 0.86520
c-a 0 0.00001 0 0.05773
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Y. CONCLUSION

An ANN model for directional relaying scheme-based on
fault induced transients has been developed and tested in this
paper. The developed scheme comprised 3-level hierarchical
NN structure for fault detection, direction discrimination, and
faulted phase selection. The adoption of the normalized
signals of the fault induced transients instead of the the ful]
values preserves the approach adaptivity. Simulation results
using the EMTP program have proved the validity of the
proposed scheme. Excellent training convergence, extremely
fast recall and reasonable accuracy represent some features of
the proposed technique.
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