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Abstract — The paper discusses the merit of different
transmission line models in terms of accuracy and efficiency,
followed by a description of the implementation of a phase
domain line model in an EMTP-type program. Topics
included are: model formulation, least squares curve fitting,
time delay identification and convolutions. The implemented
model is demonstrated to give highly accurate results for the
simultation of low frequency coupling effects between paraliel
overhead lines.

1 INTRODUCTION

Parallel AC and DC overhead lines are present in several
HVDC projects currently under development, for instance in
southern Norway, and in the 3-Gorges project in China. It is
known that coupling between the AC and DC line can lead to
undesirable interaction phenomena, which may affect system
control and protection, and possibly the lifetime of the
converter transformers [i].

Traditionally, the most accurate transmission line medels
have been based on a constant transformation matrix with
frequency dependent modes. This type of model may give
satisfactory results for situations involving high frequency
transients, but the accuracy often deteriorates in the low
frequency area due to frequency dependency of the
transformation mairix (unbalanced lines).

An investigation revealed that line models based on a
constant transformation matrix will in many situations not
simulate interaction with sufficient accuracy. It was therefore
decided to implement a new standard transmission line
model in EMTDC which is fully general and accurate, at all
frequencies. A recently proposed phase domain model {2]
was selected as basis for this purpose. This paper describes
practical aspects related to its implementation, and
demonstrates its suitability for simulation of interaction
phenomena.

2 REVIEW OF TRANSMISSION LINE MODELS

Accurate transmission line modeling requires that the
frequency dependent effects of the line are taken into
account. At present, there are three main categories of line
mnodels which have the potential of achieving this :

* Exact pi-model
+ Traveling wave model with modes
o Traveling wave model in phase domain

For these models it is necessary to approximate a set of
{requency responses with rational functions, in order to
achieve high computational efficiency for the time domain

Oslo, Norway

convolutions. The set of frequency responses is different for
the different line models.

Exact pi-model [3]

The elements of the pi-model are oscillating functions in the
frequency domain due to the time delays of the line.
Although it is possible to fit these functions with rational
functions, the order can become very high when considering
a fong line (or wide frequency range). The high order would
make this model time consuming in the time domain
simulations.

Traveling wave models
The traveling wave method is the preferred approach

‘because the time delays can with this approach be extracted

from the functions to be fitted (backwinding), thus allowing
a low order model. In addition, decoupling between the two
line ends allows further savings in the time domain when it is
necessary to update the system admittance matrix (due to
non-linear circuit elements).

Traveling wave model in the modal domain
The existing frequency dependent line models in EMTDC

are based on the traveling wave approach with frequency
dependent modes and a constant transformation matrix, with
an implementation similar to [4]. However, as is shown in
section 4, this model is sometimes unable to simulate low
frequency coupling effects with sufficient accuracy.

In principle, this deficiency can be overcome by
including the frequency variation of the transformation
matrix in the simulation [5]. Although this approach gives
accurate results for cable systems, it is in general not
applicable to overhead lines because the modal
decomposition is sometimes unstable {6].

Traveling wave model in the phase domain
The probiem of a frequency dependent transformation matrix

can be overcome by formulating the model directly in the
phase domain (without diagonalization). With this method it
is necessary to fit in the phase domain the matrix elements of
the propagation function H(w) and the characteristic
admittance Y.(w). The elements of Y (w) are smooth
functions of frequency and can easily be fitted.

The fitting of H(w) is more difficult because its
elements contains modal contributions with different time
delays. In several contributions [7-8] it has been suggested 10
extract from each element of H(w) a single time delay.
However, the uncompensated part of the time delays may
result in an oscillating behavior in the frequency domain. For
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lines with high ground resistivity a large number of

oscillations may occur, thus requiring a high order fitting.
The problem of different time delays in H(®) can be

overcome by including modal time delays in the phase

domain. Four line models have been proposed which achieve

this :

ARMA Model (z-domain)

Idempotent Line Model (s-domain)

Polar Decomposition Model (s-domain)

Universal Line Model {(s-domain)

The ARMA Model {9], which has already been
implemented in ATP-EMTP, is based on fitting the elements
of H (and Y,) in the z-domain, with time delays obtained
from the modes. Although the method appears attractive, its
usage of z-domain fitting makes it necessary to refit the
elements of A (and ¥,) whenever the user wants to change
the time step of the simulations. This is inconvenient from a
practical point of view, and so an s-domain approach is
preferred.

The Idempotent Line Model [10] expands H into a sum,
where each term is given as an idempotent matrix M
multiplied with a comesponding mode. The rational
approximation of H is obtained by fitting the modes and the
idempotents. However, we have found that in some cases of
overhead line modeling, unstable poles are needed in order
1o achieve accurate fitting for M.

The Polar Decomposition Model [11] has a kernel
(diagonal matrix) containing poles and time delays from the
modes, which is multiplied by two rectangular matrices C
and B. The difficulty with this model is the identification of
C and B due to the non-linear nature of the problem.
Although “BC-iterations” gave quite accurate results, the
optimal solution was probably not obtained.

The Universal Line Model [2] is based on calculating
unknown residues when the poles and time delays have been
precalculated from the modes. All poles are assumed to
contribute to all elements of H, but without the usage of
idempotents or a pole sharing kernel. This model has been
found to give highly accurate results and was therefore
selected as basis for a new standard model for EMTDC.

3 IMPLEMENTATION OF PHASE DOMAIN MODEL

The Universal Line Model has been described in {2]. The
following reviews the main elements of the model and
highlights some practical aspects related to its
implementation.

3.1 Frequency domain fitting

" Approximation with rational functions
As part of the transmission line project, 2 least squares fitting
routine, Vector Fitting (VF) [12], was implemented as a
FORTRAN subroutine. The resulting fiting will in general
contain both real and complex poles, depending on the shape
of the frequency response. All poles are stable.

Backwinding, collapsing, and fitting the modes of H (w)
The modes of H()=exp(—JYZ!l) are calculated via a

frequency dependent transformation matrix, 7. T is obtained
by the Newton-Raphson approach described in [13]. (Usage
of a constant real T was found to give less accurate results
for the phase domain fitting of H).

Each mode is “backwinded” by wmultiplication with
exp(st;), and the resulting function is finally fitted using
VF:

N
ST gy m _ Cm

e H(s) Es-a,,. (1

Unlike asymptotic magnitude fitting [4], VF requires
both the magnitude and phase angle of the mode to be known
before the fitting can be done. Thus, the time constant for
backwinding must be precalculated. A suitable time constant
is calcutated based on the technique in [6]. This method is
based on a furmula by Bode, which for a minimum-phase-
shift function relates the magnitude function to the phase
angle.

Significant improvements have been made to the
backwinding procedure in [6] :

s Previously, “Q” in figure 2 of [6] was selected as the
frequency where the magnitude function has decayed to
0.1. In the present implementation, £ is chosen as the
frequency where the magnitude function has decayed to
“errmode”, with errmode as defined in section 3.4,

e The time delays are finally subjected to an iterative
refinement in which the modes are refitted several times,
each time with an improved time delay. A simple search
method is used in the iterations.

Modes with nearly equal time delays are replaced with a
single mode equal to the average of the modes. An
associated time delay is calculated in the same way as for the
uncoilapsed modes.

Fitting H (w) _in the phase domain

With the poles and time delays of the modes known, H (w)
is finally fitted in the phase domain (calculation of residues).
Each element is on the form :

N
h(s) =i(i———f”: e " (2)

=l m=t S " Om,i

Because the modes are fitted independently, poles of
different modes may accidentally come very close. If this
happens at low frequencies (were the time delays are of little
significance), the respective residues for the phase domain
fitting can become very large (with opposite sign). This can
potentially cause instabilities in the time domain solution due
to roundoff errors. Therefore, a warning is issued if the ratio
between residue and pole (c/a) is larger than a threshold
value, which at present is set to 100. If this happens, then
one should consider to refit the modes with a different order.
The probability of large residues occurring increases with
increasing order of the fitting.
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Fitting ¥.{w) in the phase domain
Initially, the special vector fitting capability of VF was used
to fit ¥,(w) columnwise using an identical set of poies.
However, as VF has been implemented without usage of a
sparse solver, the memory requirement was found to be
excessive for situations with a large number of conductors.
This problem was solved by using the same lumping
technique as for H(w). Because Y, (®w) has no time delays,
a suitable set of poles can be obtained by fitting the sum of
all modes. Furthermore, for a (square) matrix A with
eigenvalues A we have the relation {14] :

N N
> = A 3)
i=t

i=1

Thus, instead of fitting the sum of modes we can instead fit
the sum of the diagonal elements of ¥, ().

The sum is fitted using VF with an approximation of the
form

N
c
= z_..n.r_ 4
(s) d+,,,=;3—ﬂm 4

Finally, the clements of Y, () are fitted in the phase domain
using the poles from (1) as known quantities. Similarly as for
H(w), all elements of Y, (w) get identical poles.

Solution technique for least squares problem
A linear least squares solver is needed both in VF and when

calculating the residues of H(w), and the residues and
constant term of ¥,(w). For this purpose we use QR
decomposition with rank revealing column pivoting. This
method gives excellent results also in situations when the
problem is not of full numerical rank. Usage of singular
value decomposition (SVD) is more time consuming.

3.2 Time domain implementation

The traveling wave equations are interfaced to the main
program by means of the usual Norton Equivalent in fig. 1.

I, I
o P
V, Ve

Ihis G G

VPP OE PRI ATL PRR LR PR E O T T LA A E P L F o
Fig. 1 Norton Equivalent for transmission line model

Figure 2 shows an overview of how the updating of Jhis, is
carried out. V, and V,, are calculated by the EMTDC main
program and read into the transmission line subroutine.
Subscripts i and r denote incident and reflected waves,
respectively.

I.(n) =GV, (n) - Ihis, (n)

I'kr(n) = lk(n)—lh-(n)
I,(n+D=H=*I, (n~-7)

This, (n+ 1) =Y, *V(n)~2I,;(n+1)

Fig. 2 Updating [kis, in figure |

Two alternative methods have been implemented for
evaluation of the convolution integrals in figure 2 (denoted
by % $ ,) :

1) trapezoidal integration

2) recursive convolutions [15] assuming linear variation
between the voltage samples of the driving functions
V.i)

Method 1) and 2) give identical expressions in the time
domain, but with different numerical values for the
cocfficients.

Convolution integral for characteristic admitiance
For simplicity we now consider the case of a first order

fitting (one pole). The convolution of (4) with an input u
(y = f *u) becomes :
way=ax(n—D+Au(n)+yu(n-1)

y(n) = cx(n)+d u(n) 5

The definition of the coefficients o, A and [l are given in
Appendix A (trapezoidal integration), and in equation (A.6)"
of [15] (recursive convolution).

However, (5) cannot be implemented in this form because
the state variable x depends on the input at the same time
instant. This problem is solved by introducing a modified
state variable :
x'(i) = x(n)~ Au(nl) {6)
which gives the following result :
X(m=ax(n-1)+@+y)u(n-1)

y(n) = cx'(m)+(d +cA)u(n) M
Equation (7) can be simplified by scaling the input :
x°(n) = ax"(n—-D+n(n-1) ®
y(n) = ¢'x"(n) + Gu(n)
where
c’=c{a A+ L) 9
. G=d+ch (10}

When there are more than one pole, x” becomes a vector
(array). Note that elements of the state vector can be
complex due to complex poles. However, because complex
poles always come in conjugate pairs, the output of ¢"x'(n)
is real. Thus, the history current sources are real quantities.

Convolution integral for propagation function
In general, the time delay T of a given delay group wili not
be an integer multiple of the time step length Ar used in the
simulation. This makes it necessary to interpolate between
the sample points of the reflected current waves.

The travel time can be written

1 =(k+E)Ar (1

where k is an integer and £ is a real number between 0 and 1.
The updating of the state variable in (5) for propagation now
becomes :
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x(ny=ax(n—1}Y+Au(n-(k+&))

(12)
+uuln-k+1+&))

A modification of the state variable and scaling of the
input gives the final resuit :

xX(My=ax (n-D+un—(k+1+£)

Y . (13)
yim)=c'x"(n)+Guln—(k+&))
where
= clad+ 1) (14)
G=cA (15)

The interpolated values in (13) are calculated by linear
interpolation, as indicated by blank dots in figure 3.
Calculation of an interpolation point is done at the cost of
one multiplication and 2 additions. The function is assumed
to vary between the points as indicated by the dotted line.

A 4

1 i
n—(k+1) n—k
Fig. 3 Linear interpolation

An alternative approach (figure 4) was also considered
where the point at n—(k+1) is
interpolation. However, the increased accuracy was small
and does probably not justify the fact that an additional term
must be included in the updating of the state variable (x) in

(10).
u ’J
s L
I’ £
‘\O-.a”
n—(=1c+l) n—:k >

' Fig. 4 Alternative interpofation scheme

3.3 Time step loop considerations

Columnpwise realization

Because all elements in each column of H(w) and ¥,.(w)
have identical poles, a special columnwise realization for the
convolutions is possible. The quasi-code below shows the
updating of the history current source for end “k” of the line,
due to the characteristic admittance.

Note how the property of identical poles has made it
possible to “pull out” the updating of the state variables (x)
from the row-loop. This reduces the number of floating point
operations in the inner-loop from 4 to 2. A similar result is
obtained for the propagation function.

included in the

for col=1l:Nc
for m=1:N
x(m,col)=ax{m, col} *x(m,col}+VKi{col}
end
end

for col=1:Nc
Thisk{cal}=0
for row=1l:Nc
for m=1:N
Thisk{col)=Ihisk{col}
-¢(m,row,col) *x{m, col)
end
end
end

Elimination of high frequency poles
Poles satisfying

102

abs(a) > _At_ (1 6)

are not included in the time domain simulation, as their time

_constants will in any case not be resolved by the given time

step. This feature increases the effieciency of the time
domain simulation.. :

When neglecting a pole, it is necessary to modify G (in
(10) or (15)) as follows :

G'=G+cla (17

3.4 User interface

For the fitting of ¥_(w) and H(w) the user has to specify :
N i : Minimum number of poles

N 0 Maximum number of poles

errlim : error tolerance

Fitting Y _(w):

The fitter starts with a number N=N,, poles and
increments N until the error is below errlim, or N, is
reached. A relative error measure is used for Y ().

Fitting H(w) :

The fitting of H{@) is more delicate because there is no
unique relation between the accuracy of the modes and the
accuracy of H{w). The approch adopted is as follows : The
modes (groups) are each fitted to an accuracy errmode, and
H{w) is fitted using the resulting poles and time delays. If
the required accuracy for H{w) is not met, errmode is
reduced and the process is repeated until the required
accuracy (errlim) is achieved (oruntil N =N, ).

Weighting -

The accuracy of the least squares fitting can be modified by
using different weighting at different frequency intervals. For
instance, a very high weight may be used at power frequency
to ensure correct load flow.
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4 CALCULATED RESULTS
4.1 Line geometry
As an example we consider a 500 kV DC line in parallel

with a 300 kV AC line. The line length is 25 km, and the
ground resistivity is is 1000 Qm. The lines are untransposed.

40 . . . -

'é' .

T30t . .

]

g ) . . e
=20 . .

g 3 4 5
S

B 10'

I

0 10 20 30 40 50
. Horizontal distance [m]
Fig. 5 Parallel DC and AC line

L
=

4.2 Balanced line simulation

Frequency dependent line models with .a constant
transformation matrix can give cormrect results when the line
is assumed to be perfectly transposed, as the transformation
matrix is then real and constant.

In the following we neglect the DC line, and assume the
AC line to be perfectly transposed. One of the conductors is

energized with a 50 Hz voltage source at peak value, as
shown in figure 6.

1 volt,
50 Hz AC  pe

D e
Fig. 6 Energization of transposed AC line

Figure 7 shows the simulated voltage on one of the non-
energized conductors, at the receiving end. The voltage is
shown when calculated by the modal domain model (dashed
line), and by the phase domain model (solid line). As
expected, the deviation between the two voltages is small. -

0.4 r T . —

— phase domain
o2} - modal domain

— deviati
= o deviation
D

=

g
5 -0.2

>

-0.4

0o 2 4 6 8 10
Time [ms]

Fig. 7 Simuilated voltage on non-energized
conductor, at receiving end

4.3 Unbalanced line simulation

For unbalanced (untransposed) lines, simulations by modal
domain models may produce incotTect results due to the
frequency variation of the transformation matrix. The errors
may E/ in some instances become unacceptably large, for
instance ‘when calculating inducing effects between parallel
overhead lines.

We consider the configuration in figure 5, when none of
the lines are transposed. In both the phase domain and modal
domain models, the frequency dependent quaniities were
fitted in the range 0.1 Hz to 1 MHz.

Figures 8 and 9 show the fitted elements of H and Y,
for the phase domain model. A weighting of 10 was used for
the samples between 0.1Hz and 50 Hz, in order to produce a
very high accuracy at low frequencies. ¥, was fitted with 17
poles (per column), while H was fitted with 30 poles (per
column). The approximations are seen to be very accurate.

For the modal domain model, the tranformation matrix
was calculated at 50 Hz, and the modes were fitted using a
high order approximation. Also in this case was a weighting
of 10 used for the least squares fitting beiween 0.1 Hz and

50 Hz.

0

10 — T

— original
--— fitted

Magnitude [p.u.]

deviation

10° 10* 10°
Frequency [Hz]

-100¢

— original
-—- fitted

Phase angle [deg]
b N
(=) [=]
Q =]

-400 1

10° 10° 10 10°
Frequency [Hz]

Fig. 8 Fitted elements of H{w)
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Fig. 9 Fitted elements of Y (w)

Induction of harmonics from DC line to AC line

With the DC line in monopolar operation, the induction
effect from a 1A 12" order harmonic current in the DC line
on the AC line was investigated using the circuit in figure 10.

1A, bC |
600 Hz
-V,
AC =V,
— Vs

B o e o A

Fig. 10 Induction from 12" order harmonic current

Table 1 shows the magnitude of the vollage on the
receiving end of the AC line. The voltages have been
‘calculated by both the modal domain and the phase domain
model. The simulated voltages are compared to a
theoretically accurate solution calculated in the frequency
domain. The voltages by the phase domain are accuraie to
better than 1%, whereas the modal domain model gives
errors as high as 35%.

Table 1 Calculated voltages on AC line

IVl [voit] V4l [volt] IVl [volt]
Theoretical 27.49 21.85 20.34
Phase domain 27.38 21.77 20.29
Modal domain 17.92 27.74 19.01

Table 2 shows the same result, but with the DC line in
bipolar operation {no ground return). The induced voltages
are now much smaller. As a result the relative errors by the
modal domain model become very large, but they are still
small for the phase domain model.

Table 2 Calculated voltages on AC line — Bipolar operation.

IVl [volt] IV 4 fvolt] IV 5l [volt]
Theoretical 5.51 2.96 1.88
Phase domain 5.55 2.96 1.86
Modal domain 10.20 6.10 15.26

Induction from DC current
Theoretically, a DC current in the DC line will not induce
any voltage along the AC line. However, inaccuracies in the
fiting may result in an artificial coupling between the two
lines. This coupling can be unacceptable as the resulting DC
currents may saturate transformers in the AC system.

We now calculate the induced DC currents flowing in the
AC line, due to a DC cuirent in the DC line. The circuit is
shown in figure 11.

DC
IA,

bC

I;
—>

L
AC >
Is
=

B e oy A A
Fig. 11 Induction from DC current

Figure 12 shows the simulated currents in the AC line,
when the DC current is ramped up to 1 A in 1 second. It is
seen that the stationary currents by the phase domain model
are much smaller than those by the modal domain model.

0.1 - .
- phase domain
' --- modal domain
0.05} o I3
< e A
‘E’ 13 , 14 N Is
S
&
I,
0.1 .
o 1 2 3 4 5
Time [s]

Fig. 12 Induced currents in AC line
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Zero sequence induction from AC line to DC line
The inductive effect from a 50 Hz zero squence current in
the AC line was calculated using the circuit in figure 10.

LV,
DC
LV,
1A,
50 Hz
— AC

o

Fig. 10 Induction from 50 Hz current with ground return

Table 3 shows the magnitude of the voltage on the
receiving end of the DC line, as calculated by the modal
domain and the phase domain model. In this case both
models give good results. The increased accuracy for the
modal domain model is due to the fact that the
transformation matrix was calculated for the same frequency
as that of the inducing current (50 Hz).

Table 1 Calculated voltages on DC line

WVl [volt] IVl [volt]
Theoretical 3.09 3.31
Phase domain 1.06 3.28
Modal domain 2.85 337

5 CONCLUSIONS

The paper has described the successful implementation
of a phase domain transmission line model in an EMTP-type
program. Important features of its implementation include:

Fitting H(w)
e Calculation of modes for H by a frequency dependent
transformation matrix

e Calculation of time delays by an iterative procedure

s Collapsing of modes with nearly equal time delays

« Calculation of poles using a least squares technique (VF).

e Final fitting of 4 in the phase domain, with poles and
time delays as known quantities.

Fitting Y, (w)

¢ Obtaining poles by fitting the sum of diagonal elements
of ¥, using VF

« Final fitting of Yc in the phase domain, with poles as
known quantities.

Time domain implemeniation

e Columnwise realization for convolution of H and Y,

e Choice between recursive convolution and trapezoidal
integration

Simulated results show that

s The phase domain model simulates the coupling between
the AC line and DC line with a high degree of accuracy.

e The modal domain model may lead to inaccurale
coupling of harmonics from the DC line to the AC line.
Also, a DC current may be induced into the AC-line.
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7 APPENDIX
A — Trapezoldal integration

For (3) we get with trapezoidal integration :
a={l+aAt/2)/{{ —ant/2)

A== (At/2)/(1—aAt/2}

(A1)
(AD)
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