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Abstract — With a view to optimal representation of
large power transformers under gemeral transient
conditions, the paper examines the structure of
MODAL models and their suitability for a postiori
tuning to measured data. The paper proposes a
methodology for tuning an initial modal model to fit
test data which is obtained from a transformer after
construction. A simple illustrative case helps to clarify
the suggested procedure.
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L. INTRODUCTION

Recent work by the authors [1-4] has shown that it is
possible to develop high-frequency transformer models
from drawing-board data, just as transmission-line models
are developed from drawing-board data (conductor heights,
separations, soil resistivity etc.).  The accuracy of
frequency-dependent transformer modelling has been
investigated previously for the case of test-windings on a
25kVA core [3] and the accuracy was found to be good.
However, it is problematic as to whether such good
accuracy could be achieved in the case of large power
transformers using only relatively simple data.

Recognising this, the formation of accurate models for
large power transformers should involve field test
measurements. In particular, it is envisaged that such field
test results would include admittance frequency-response
results as measured at the transformer terminals.

The first section of the paper shows that the elements of
a transformer modal model for a 150MVA power
transformer maintain the same structural form identified
previously [3-4] for the much smaller 25kV A transformer.
The paper proceeds to adopt a variational approach in
which key transformer parameters are varied in order to
establish the effects on the model elements. The paper
shows that the effects are quantitative rather than
qualitative, i.e. the basic structure remains intact. It is this
feature of MODAL models which makes them ideally
suited to tuning.

The paper proceeds to develop a methodology whereby
an initial MODAL model can be tuned to fit experimental
data. In particular, since the core of the model consists of
a set of independent RLC circuits, tuning of this part of the
model simply amounts 10 adjusting the L and C values to
give the comrect resonant frequency and adjusting R to
ensure the correct damping. The remainder of the model
can be adjusted using various optimization techniques [6-
8]

Unfortunately, the authors do not have a large power
transformer for test purposes. However, the proposed
procedure is applied to a simple test case involving the

admittance spectra from a synthetic winding to
demonstrate its validity.
IL TRANSFORMER MODAL MODEL

Fig. 1| shows the MODAL model developed for
transformers in [1-4]. In the frequency domain, the model
is an exact equivalent of an original lumped-parameter
representation of a transformer. ¥ is a vector comprising
the voltages at the terminals of the individual windings. I
is a vector representing the currents entering (or leaving)
the terminals. V" are the voltages at the internal nodes of
the discrete representation of a transformer.
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Fig. 1 Transformer modal model
The model has an admittance equation
Ig ={Y,+Y'pgg+PCgF} Vg =Ypbyp (1)
while the voltages at the internal nodes are given by
V'=(QgF, +Cy)Vg 2

The matrices 0, P, £, g, P, ¥, ¥''gg and Cy are defined in
{1-4].

III. STRUCTURAL FEATURES OF THE MODEL

Eqn. 1, the admittance equation for the modal model,
can be split into three distinctive parts, that dominated by
Y,, that dominated by V¥''gpand that where the

tetm P¢gh, is at its most dominant.

Y, has the identifiable physical significance of

completely representing any transformer in the case where
capacitive effects are suppressed (or ignored). In
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particular, it accounts for normal transformer action (turns
ratio, leakage reactance). It follows that ¥, is necessarily

inductive in character (albeit lossy and frequency-
dependent) and hence dominates at low frequencies.

Y''gg is always purely capacitive if the capacitances of
the original lumped-parameter representation of the
transformer are assumed to be lossless and frequency-
independent. It corresponds to the input admittance to a
transformer when all the inductive couplings are
suppressed. Hence, the ¥''5, matrix swamps out all other

effects at high frequencies.

The term P.gP, models the resonant effects which
occur during the transition from the low-frequency

behaviour of the transformer to the high-frequency
behaviour of the transformer.

Knowledge of the frequencies at which particular terms
in the model dominate is of great benefit in a tuning
procedure since it is only necessary to consider those terms
when tuning the model to match the exact spectra in the
corresponding frequency range {Section VI).

Eqn. 2 defines the relationship between the voltages at
the internal nodes along the transformer and those at the
boundary terminals. It can be rewritten as

V'=CyuVp +0807(C, - Cy Wy (3)
where P, in egn. 2 is replaced by
P =Q7'[C, -Cy] (4)

As shown in [2],C, may be identified as the low
frequency component of the solution and corresponds to
the quasi-final distribution of classical transformer theory.
l.e. as s — 0, where s is the Laplace transform parameter,

Vi=C,Vy %)

Similarly, €, may be identified as having the physical

significance of corresponding to the initial distribution of
classical analysis. le.as s >

V'=CHVB (6)

£ is a diagonal matrix whose elements are defined as
modal transfer functions. As identified in [4], the character
of the modal transfer functions is that of lightly-damped
second-order low-pass filters. The elements of g model the
natural resonances of the transformer and are approximated
using transfer functions of the form

cujz
g,(8)=— 5 )
§ +25jmjs+a)j

It is straightforward to realise transfer functions of the
form of eqn. 7 with simple RLC circuits as shown in [4]

where the capacitance values, C;, may be determined from
the diagonal matrix ¢{'since {=sC. (The subscript j denotes
the jth mode).

Each ‘column of @ spatially distributes the

corresponding modal output voltage, V', to the internal

nodes of the discrete transformer representation.
IV. 150MVA TRANSFORMER MODEL

In this section, the nature of the elements of the modal
model for a 220kV/66kV 150MVA disk-winding
transformer is established. The high-voltage winding
consists of two 664-turn windings wound in parallel. The
low-voltage winding consists of 200 turns. Details of the
transformer core are given in the Appendix. The goal in
this section is to confirm that the general characteristics of
the key elements of the modal model for a large power
transformer are identical to those identified previously for
a 25kVA transformer [4]. Furthermore, in order to be
suitable for tuning, it is vital that the basic structure of the
elements of the model remains unchanged when input
design data values are varied. Since accurate capacitance
values are crucial to the accurate modelling of resonant
effects, the present section includes results clarifying the
consequences of using incorrect capacitance values. As a
test case, inter-winding and ground capacitance values
which are incorrect by a factor of two have been used.
Other test cases confirm the findings,

Fig. 2 shows the amplitude spectra of the modal
transfer functions (the elements of g) for modes 1-3. Fig. 3
shows the corresponding amplitude spectra when the
capacitance values are altered.
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Fig. 2 Amplitude spectra of modal transfer functions
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Fig. 3 Amplitude spectra with inter-winding and ground

capacitance values doubled from base case

What is important to note regarding Figs. 2 and 3 is that
the amplitude spectra of the modal transfer functions
follow the same general nature regardless of the accuracy
of the input data. (The same is true of the phase
characteristic of the modal transfer functions). The
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amplitude spectra are initially unity before rising to a peak
after which they decay to zero. This allows the same type
of circuit approximation (eqn. 7) to be used regardless of
the actual transformer dimensions or detaiis.

The elements of the modal distribution matrix, ¢, may
be shown to be, to all intents and purposes, real and
independent of frequency. Fig. 4 shows the distribution
associated with the first mode along both the high and low
voltage windings. Superimposed on this is the
corresponding modal distribution when the ground and
inter-winding capacitance values are doubled (dashed line).
For this mode and all other modes, the modal distributions
defined by the columns of @ are well-behaved functions.
Furthermore, the distributions are only affected to a
minimal extent by changes in the capacitance values (as
illustrated here) or by changes in the impedance formula
parameters. This is important since the ultimate goal is to
find simple approximating functions to these distributions
with the function variables determined from an
optimization routine.
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Fig. 4b  Modal distributions along LV winding

The distributions defined by the columns of the Cy
matrix correspond to the high frequency or initial
distribution of classical theory. Fig. 5 shows the high-
frequency distribution along the windings when a unit of
voltage is applied to the sending-end of the high-voltage
parallel windings with all other terminals grounded.
Again, the distributions maintain the same generic nature
despite the changgs in the transformer data.
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Fig. Sa  Cy distributions along the HV windings
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Fig. 5b  Cy distributions along the LV winding

The columns of the C; matrix define the low-frequency
distributions along the transformer windings. Fig. 6 shows
the low-frequency distribution along the windings when a
unit of voltage is applied to the input terminal of the HV
paratlel windings with all other terminals grounded.
Superimposed on this is the distribution obtained when
impedance formula parameters, p and ¢, [5] are halved
(dashed line).
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Fig. 6a  C, distributions along HV windings
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Fig. 6b  C, distributions along LV winding

The above results clarify the structural nature of the
MODAL model for large power transformers. Each
distribution is seen to have a basic structural format which
is important in that it facilitates a corresponding generic
function approximation thereby making the model
structure ideally suited to tuning.

V. OPTIMIZATION TECHNIQUES

In order to tune a model, it is first necessary to define
an error function or cost function which when minimised
defines an optimal set of model parameters. The function
used in the paper is

(8)
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where F, represent the exact or measured data points while
F, represent the estimated or simulated data points. N is
the number of data points.

Having determined the error function, it is necessary to
minimise the function. Different procedures are required
depending on whether the function is univariate or
multivariate. In addition, there may be certain constraints
on the variables e.g. it may be necessary to impose a
constraint that all variables are positive if they correspond
to capacitance or inductance values or if a pole is to be in
the left-half of the plane in the s-domain. Numerous
methods exist for minimising functions. However, in this
work the Golden Section search and parabolic interpolation
methods [8] are used for one-dimensional minimisation
while Quasi-Newton methods and the Nelder-Mead
algorithm {6-8] are wused for multidimensional
minimisation. Where constrained minimisation is required
Active Set Methods are used [6].

V1. TUNING PROCESS FOR A MODAL MODEL

In this work, the measured data available for use is
taken as the set of admittance measurements made at the
transformer terminals. Hence, the first requirement in the
process involves obtaining the exact admittance spectra for
each of the elements of the ¥y matrix in eqn. 1. For
example, ¥z(1,1) corresponds to the input admittance of a
transformer when all the other terminals are grounded.

To help explain and illustrate the tuning methodology,
a lossless single winding will be considered when
describing the technique.

The first step in the process involves approximating ¥.
+i the case of a lossless model, ¥, =1/sE where E is

purely real. Hence, the elements of E can be obtained by
applying a univariate optimization algorithm to the low
frequency section of each of the admittance spectra. In a
lossy case, the elements of ¥, are approximated as shown
in [4] using RL circuits. The RL values are obtained by
applying a multidimensional optimization routine to the
low-frequency section of the admittance spectra.

The second step involves identifying the elements of

the ¥''pp matrix. If diclectric losses are ignored,
¥"gp=5Cpp. Hence, the elements of Cgzpcan be
obtained by applying a univariate optimization algorithm
to the high-frequency section of each of the admittance
spectra.

The resonant frequencies are adjusted by changing the
values of the L; and C; (i.e. the values of the elements of
the modal circuits) since @, = l/,{L ;C; - (Inalossy case,

the values of R; can be varied to adjust the damping of the
resonant peaks).

The final step involves identifying the elements of the
0, Cy and C, mairices. Note that P, is defined as

Q7' (C, -Cy). Hence, having defined @, C; and Cy, P
and P, (transpose of P) are automatically defined. It is
required that each column of @, Cy (if the capacitance
representation is in error) and C; (if the impedance
parameters are inaccurate) be approximated by a relatively
simple function with a minimal number of variables. The
type of function is not crucial. However, suitable functions
can be identified based on knowledge of the behaviour of a
particular transformer structure. For example, the columns
of @ for a uniform single winding are quasi-sinusoidal in
nature. Hence, in the illustrative case of a lossless
winding, the jth column of @ could be approximated as

Ky sin(jax/l), where [ is the axial length of the winding and
x measures distance along the winding where x=0 is at the
sending-end terminal of the winding.

For a lossless winding with a uniform capacitance
distribution, the initial voltage distribution along the
winding when the remote end of the winding is grounded
can be theoretically evaluated as

v{(x} = sinh(y(/ — x))/ sinh(/) (9

where y = ,/C/K , C is the capacitance to ground per unit

length and K is the capacitance between the mirns per unit
length. As a consequence of this, a function of this type or
one similar in nature, can be used to approximate the
elements of Cy when uniform capacitance distributions are
considered. Other exponential-type functions can be used
when non-uniform distributions are involved.

The matrix €, corresponds to the quasi-final
distribution of classical theory and is determined by the
inductance network. The distributions defined by the
columns of C; are very nearly linear in nature for a
untform single winding.

Having decided on approximating functions for the
model elements, the unknown variables can be obtained
using a multidimensional optimization strategy.

VIl. ILLUSTRATIVE EXAMFLE

Consider a six section lossless winding detaiis of which
are given in the Appendix. This is defined to be the
reference model. Note that the capacitance representation
involves capacitances between each and every other node.

However, suppose that an initial modal model was
formed on the assumption that only series capacitance
between adjacent nodes was to be taken into account. The
series capacitance per section was taken as 400pF and the
shunt capacitance per section was taken as 300pF. Fig. 7
shows the exact admittance spectra obtained from the
defined reference model when the correct capacitance
representation inclusive of all capacitive effects is used.
Superimposed on these are the admittance specfra obtained
when the capacitance representation inclusive only of
series capacitance between adjacent nodes is used. Fig. 8
shows the comresponding unit-step responses at the remote
end of the winding.
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Using the procedure outlined in Section VI, the initial
model can be tuned so as to match the exact spectra. Fig. 9
shows the amplitude spectra from the adjusted model
(dashed line) superimposed on the exact spectra (solid
ling). Fig. 10 shows the corresponding step responses.
Note that for this case the first column of Cy is

approximated by a function of the form e ") where i is

the node along the winding. The second column of Cy is
identical to the first but in reverse order. The columns of
Q are approximated as K, sin{/mx//). The correct resonant
frequencies are obtained by adjusting the values of C;. A
univariate optimization algorithm is used to obtain the
values of E and Cyg. Tabie ! in the Appendix gives the
values of the tuned variables. 1t is clearly evident from the
results shown in Figs. 9 and 10 that remarkable accuracy
has been achieved for this particular case.
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Vill. CONCLUSIONS

The paper has investigated the nature of a modal model
for a large power transformer. It has been shown, at least
for a disk-winding transformer, that the character of the
model remains unchanged from that established in
previous work for a 25kVA transformer [3-4].

The paper proceeds to examine the effects on the
elements of the MODAL model of varying physical
parameters of the transformer. The effects are seen to be
such that the model maintains its general structure, thereby
clarifying the inherent suitability of the modal model
structure for tuning. The paper proposes a twning
methodology which is shown to be effective for a simple
illustrative test case.
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In principle, the modelling technique described in the
paper is applicable up to quite high frequencies. In
practice, it would appear that natural frequencies, directly
associated with the windings, are heavily damped beyond
about IMHz — at which stage the windings themselves
exhibit a largely capacitive nature which can be identified
by the proposed method. It is acknowledged that making
measurements at high frequencies could prove
problematic. In real life situations, resonant transient
overvoltages will be govermed as much by extemnal
conditions as conditions internal to the transformer (e.g.
capacitances and inductances associated with substation
busbars, incoming feeders, etc.). The authors have not
tried to model these latter effects and acknowledge that
accurate prediction of transient effects at very high
frequencies would need more than just an accurate
transformer model.  Also, wave propagation effects
through bushings etc. would need accurate modelling. In
short, the bandwidth attainable from the model can only
finally be determined by seeing up to what frequency the
proposed tuning method wouid be effective in practice if
reliable high-frequency test measurements were available.

The structure of the model allows for non-linear effects
associated with the iron core to be included. Indeed, itis a
feature of the model structure that it actually detaches low-
frequency behaviour from resonant effects at high
frequencies. It is simply a matter of “bolting” any
acceptable low-frequency model onto the FRONT-END of
the model structure. Low-frequency effects are in fact
modelled by ¥, in the given model. The model then
effectively connects a series of admittances in paraliel with
¥, to account for high-frequency effects. It may be noted
that the lowest natural resonant frequency of a practical
power transformer would appear to be about 10kHz at
which value non-linear effects may be reasonably
neglected. Thus, the attachment of any satisfactory non-
linear low-frequency EMTP model in lieu of the authors’
¥, would extend the range of frequencies from very low to
quite high (circa IMHz).

It is worth noting that in a real transformer the number
of natural modes can be established by simply counting the
humps in a measured terminal admittance frequency
response. [f, for example, there were seven such humps
(clearly distinguishable before the dominant capacitive
effects take over) then the transformer could be modelled

to sufficient accuracy using 2 minimum of eight sections.

Increasing the number of sections simply increases the
level of accuracy.

Finally, to conclude, the principal advantage of the
proposed MODAL model approach (based as it is on
standing waves and corresponding natural resonant
frequencies) is that it is enormously more efficient than
directly modelling the elements of a multiterminal
admittance matrix  (just as Wedepohl’'s meodal
decomposition method is more efficient in modelling a six-
phase line, say, than direct modelling in the phase domain).

IX. APPENDIX

150MVA Transformer core
' 4660
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Core parameters p, a [5] are set to 0.5Qm and 8x10%,
respectively. The ratio of axial to radial permeability is 10.
Relative permeability in the axial direction is 343.

Parameters of illustrative 6-section lossless winding
Inductance values Capacitance Values

L=0270H i=12,..,6
Li=Lay=Ly=L45=Ls=0255H
Li=L0=L5=L4s=0.235H
LJFL3:=L55=0.2|6H

CF300pF  i=1..5 Cor=Ce=150pF
Coy= C17=C23=C3,~Cs=Cs5=400pF
Cor= Cry=C:=Cs5=Cus= 360pF

Cos= C;~C2=C35= 340pF

LJ_FL35=0.199H Ccu= C15=C:6= 328pF
L;ﬁ=0.|83H Cn.f= C:¢5=320PF Cm=3]6pF
Table 1: Values of tuned variables
¥ 11196 L G (x10%)
r 0.8768 0.5038 0.1131
K 17705 0.0366 0.2752
K, 7.3565 0.0076 0.2530
Ky 0.8195 0.0026 0.2871
Kos 0.2224 0.0015 0.2884
Ky 06318
E(1,1} 01175 CBB(I-I) 0.1601x10°
E(1.2) —0.1175 CBB 1.2 -0.0926x10°
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