Proposal of Circuit Description Language

Taku Noda
CRIEPI - Central Research Institute of Electric Power Industry
2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
takunoda@criepi.denken.or.jp

Abstract - This paper proposes a language to describe the
information of a circuit for computer-aided analysis and
design. The syntax of the proposed language, named
Circuit Description Language (CDL) in this paper,
provides strong modularity which enables to build a
circuit using previously defined other circuits (building-
block construction of a circuit). This feature allows to
build a library of standard power-system models using
CDL. Example circuits are described using CDL in order
to show the power of modularity.

Keywaords : circuit, language, circuit analysis program, modularity,
encapsulation, self-documenting, maintenance, standard modei
library.

I. INTRODUCTION

Computer-aided analysis and design of a power system,
such as transient, stability, and load-flow analysis, become
common practice these days. In order to perform those
simulations, the complete information of a circuit (being
analyzed), that is the topology and the value of every circuit
element, has to be described by a certain method to pass the
information to a circuit analysis program. Two major
methods have been used for the description.

One is to type the value and the both ends of every circuit
element using a certain format in a text file. For example,
“branch cards” of EMTP requires to type the above items in
specified columns, and “netlist” of SPICE in a blank-
separated format. This method is efficient, because the
circuit analysis program can directly read the formatted text
file with a little amount of coding. However, this method is
not intuitive for human beings, and the ability of self-
documenting is quite low. Thus, imaging the entire circuit
from the formatted text file is very difficult. Describing 2
large circuit may also be troublesome due to the weakness of
modularity, where “modularity” is used to indicate the ability
to group a subcircuit and to reuse it (as a model) in different
portions with different parameters. It could be said that this
method is not for users but for computer programs.

The other method is the use of GUI (graphical user
interface) that allows to draw the diagram of an analyzed
circuit on screen using a graphical window system and a
pointing device. This method is quite intuitive for human
beings and provides an easy way to select several parts for
grouping them as a subcircuit, and thus it provides a sort of
modularity. One problem of this method is machine or OS

(operating system) dependence. And the most important
point is that even the GUI method requires another
description method when passing the information to the
circuit analysis program and also when saving the
information as a disk file. In other words, the picture of a
circuit diagram itself cannot be passed or saved without
converting into another description.

Considering the above, the author proposes a language
approach and has created the Circuit Description Language
(CDL). The syntax of CDL provides strong modularity, and
the features are summarized as follows :

1 It is allowed to define a subcircuit using previously
defined other subcircuits. Subcircuit of subcircuit, i.e.
the nesting of the subcircuit definition is also allowed.

2 A subcircuit can be used in different places with
different parameters.

3 Internal node and variable names are encapsulated inside
a subcircuit and cannot be accessed from outside.

4 Circuit description itself is documenting the circuit. The
description is in a free format, and additional comments
are allowed in any places.

Feature 1 allows the building-block construction of a circuit,
i.e. a complicated model can be built level by level from a
microscopic level to a macroscopic level. The development
of a more general and reusable model is made possible by
feature 2. The ability of model maintenance is improved by
feature 3, because this prevents careless or other-users’
change of internal variables and releases users from the
troublesome concern of the duplication of node names.
Feature 4 enables a user to intuitively image the inside of a
circuit by a glance of the description. Due to the above
advantages, a library of standard power-system models
(subcircuits) can easily be built using CDL, and those models
can safely be used by users who even do not know their
inside. Also, CDL can be used as a standard output format of
different GUI circuit editors, because CDL is cross-platform.

A translator “cdlparse”, which translates from CDL to
netlist-like format, has been developed. And the CDL code
of example circuits is illustrated in order to show the power
of modularity.

1II. SYNTAX OF CDL

The syntax of CDL is mostly from structured programming
languages such as Pascal [1], C/C++ [2,3] and so on,

IPST ‘99 — International Conference on Power Systems Transients o June 20-24, 1999, Budapest — Hungary

3

especially from the C language. CDL uses a free format, and
thus the end of a line is treated as same as a white space.
Comments can be inserted in any places, and they are
enclosed by /* and */. A name, used to identify a circuit
element, node, or variable, is an alphanumeric string staring
with an alphabet character. CDL makes a distinction
between lower and upper case characters.
A circuit is defined in the following form :

circuit circuit name

{

[circm‘t definition }

}

First comes keyword cirenait, and the name of the circuit
follows. The name is used to identify this circuit, when it is
used in other circuits. If the name is main, the circuit is the
outer-most circuit that contains all other circuits, and
therefore the main circuit is usually defined at the bottom of a
file. The definition of the circuit is described between braces
{ and }. The circuit definition consists of the following
declarations and arithmetic value substitutions.

1 Node Declarations declare the names of nodes used in
the circuit. Nodes accessible from outside, i.e. nodes
which can be connected to ones outside of the circuit or
of which the voltages and/or current can be referred as
an output, are declared as terminal. The other nodes,
which are just used for internal connection, are declared
asnoda. (e.g. terminal T1, T2; node N;)
Variable Declarations declare the names of numerical
variables used in the circuit. Variables accessible from
outside, i.e. of which the value can be changed from
outside of the circuit, are declared as parametar. The
other variables, which are just used for internal
calculation, are declared as wvariable. (e.g.
parameter a, b, theta; variable x;)
Element Declarations declare the names of circuit
elements used in the circuit. Elements such as
rasistance, inductance, capacitance,
voltage source, and current source are
prepared as predefined elements. A previously defined
other circuit can be used as a circuit element in the form
of circuit circuit name:. (e.g. rasistance Rx;
circuit line model: linel, line2;)
Connection Declarations describe the connection of
elements in the circuit in the form of connect element
name { node and value substitutions }. A node
substitution is described as node name of connected
element -> node name of this circuit. In case of a non
directional two-terminal element or a one-terminal
element, the from can be abbreviated as -> node name

A value substitution is described as

arithmetic expression. (e.g.
10.0; -> T1; ->

of this clrcuit.
variable name
connact Rx { wvalue
N })

Arithmetic Value Substitutions are in the form of
variable name = arithmetic expression.. (e.g. x = a
+ b*sin(theta*pi/180) ;)

The above declarations and substitutions are placed in
arbitrary order between the braces, but the name of a node, a
variable, or a circuit element has to be declared before ased.
Usually, a file contains one or more circuit definitions. If
circuit A uses circuit B, then B has to be declared before A is
declared, and therefore the main circuit comes at the bottom
of a file. The name of a CDL file usually ends with
extension .cdl.

CDL has a mechanism to include a file at a specified place
of another file. As used in the C language, #include is
used. If #include "filae2.cdl" is found at a place in
filel.cdl, then file2.cdl is inserted at the place of
filel.cdl. This is very useful as follows. Assume that a
transformer model circuit transformer has been
developed and described in file “trans.cdl”. Then, one can
use the model by writing #include "trans.cdl" just
before it is used. Furthermore, if a set of general models
used in substations are described together in file “ss.cdl”, one
can use thermn by writing #include "ss.cdl" at the top
of a file.

In CDL, pi, eps0, and mu0 are predefined constants of
which the values are = = 3.1415...., g = 8.854 x 107", and p,
= 1.257 x 10°° in MKSA units respectively. GND is reserved
for the node name of the ground that has absolute zero
potential. CDL also has basic arithmetic functions, such as
sgrt, exp, sin, cos, and so on, which can be used in
arithmetic expressions.

III. SAMPLE DESCRIPTION

This chapter shows sample description of example circuits
in order to show the syntax of CDL and the power of
modularity. The first example is a rather simple circuit to
illustrate the concept of modularity. And the second one is
for the illustration of practical use.

A. Example 1 — Double Resonance Circuit

Fig. 1 (a) shows a simple series RLC circuit. Using CDL,
this simple circuit is described as

circuit series RLC
{
terminal T1, T2;
node N1, N2;
paramater Rval, Lwval, Cval;
rasistance R;

IPST '99 - International Conference on Power Systems Transients ¢ June 20-24, 1999, Budapest — Hungary

32

i Nl w2 1

[]

N

>

Fig. 1 Example 1 — double resonance circuit

inductance L;

capacitance C;

connect R { value = Rval; -> T1l; -> N1; }
connect L { value = Lval; -> N1; -> N2; }
connect € { value = Cval; -> N2; -> T2; }
}

Two terminals T1 and T2 and two internal nodes N1 and N2
are declared, and resistance R, inductance L, and capacitance
C are connected between T1 and N1, N1 and N2, and N2 and
T2 respectively. The values of R, L, and C are remained as
parameters Rval, Lval, and Cval.

Next, a double resonance circuit shown in Fig. 1 (b) is
described using the previously defined circuit series RLC
as follows.

circuit main
{
terminal SRC;
currant source J;
circuit series RLC: rlcl, rle2;
connact ricl {
Rval = 10,; Lval = 1,.E-3;
Cval = 0,1E-8; —> SRC; -> GND; }
connact rle2 {(
Rval = 20.; Lval = 2.E-3;
Cval = 0.2E-6; -> SRC; -> GND; }
connect J {
value = 1.0; -> SRC; -> GND; }
}

Because this is the outer-most circuit, the circuit name is
main. Node SRC is declared as a terminal for voltage output.
Two instances of series_RCL are generated as rlcl and
rlc2, and used in different portions with different
parameters. The values of R, L, and C of rlcl are set to 10
Q, 1 mH, and 0.1 pF respectively. On the other hand, those
of rlc2 are 20 £, 2 mH, and 0.2 pF. And both of them are
connected between SRC and the ground. This can be
described as T1 -> SRC; T2 -> GND; without
abbreviation. Additionally, current source J is connected in
parallel.

It should be noted here that the “modularity” of CDL is
effectively used to describe the present circuit. First a simple
series RLC circuit is described and grouped as
series_RLC, and then two instances of the circuit are used
as different portions of the main circuit with different
parameters. This building-block construction of a circuit
makes easy to build a large complicated circuit. It should
also be noted that internal node names N1 and N2 are
encapsulated in series_RLC and no care is required when
building the main circuit.

B. Example 2 — Pi Line Model

Fig. 2 shows one-section pi representation of a single
phase transmission line. Using CDL, the line model is
described as follows.

gircuit pi_line
/* transmission-line model,
one-section pi representation */

{

tarminal /* sending and receiving */
SND, REC; /* end terminals *f
node MID; /* internal node */
parameter /* radius r and height h */
r, h, /* of conducter in [m] L7
Rs, 1; /% series loss and length */
/* [ohm/m] (m] */
variable X; /% common log term */
resistance R; /¥ series resistance */
inductance L; /* series inductance */
capacitance
Cl, C2; /* shunt capacitance */

X = log(2*h/r):

connect R { valua = Rs*l;
-> SND; ~> MID }

connect L { value = 1*mu0/{2*pi)*X;
-> MID; -> REC }

connact Cl { value = l*piveps0/X;
~> SND; -> GND }

connect C2 { value = l*piraps0/X;
-> REC; -> GND }

}

The sending- and receiving-end nodes of the line model are
declared as terminals SND and REC, and an internal node
MID is declared. The radius x [m], height h [m], series loss

IPST '99 - International Conference on Power Systems Transients e June 20-24, 1999, Budapest - Hungary

33

SND R L REC
MID
c1 —— —c2
VL L LT L L L

Fig. 2 Example 2 — pi line model

Rs [(¥m], and length 1 [m] of the line are declared as
parameters. Those parameters are the geometrical informa-
tion of the line (Rs is the earth-return loss and thus can be
considered also as geometrical information). The series
resistance R and inductance L and the shunt capacitance C1
and C2 are calculated by the following formulas. A variable
X is used to calculate the values of L, C1, and C2 from the
geometrical information,

R=R/] 149

L= “—°log(21—) Y @
2n r

C=Cp=—2 . 3)

log(g‘-h-)
”

The values of the circuit elements R, L, €1, and C2 are
internally calculated, and the calculation is encapsulated
inside the line model. Therefore, a user, who even do not
know the internal calculation, can use the model just by
giving the geometrical information x, h, Rs, and 1. This is
also one of the advantages of modularity. It should also be
noted that one (who is familiar with the C language) can
easily understand the circuit description with the aid of

comments, and thus the code is self-documenting.
Fig. 3 shows a circuit consisting of two transmission lines

REC2

line2
r=2em A=20m

R =1x10"*Q/m, /=100 km
linel
r=lcm A=10m REC1
R,=1 %107 C¥m, /=50 km

Fig. 3 Two transmission lines connected to a voltage source

IPST '99 — International Conference on Power Systems Transients »

connected to one voltage source. The name of the shorter
line is 1inel, and its length is /=50 km (» =1 cm, = 10m,
R,=1 x 10 7 Q/m). The other line is 1ine2, and / = 100
km(»=2cm, h=20m, R, =1 % 10 ~ Q/m). This circuit is
described using CDL as follows.
#include "pi_line.cdl"
circuit main
{
terminal SND, RECl, REC2;
voltage source E;
circuit pi_line: linel, line2;
connect E { value = 1.0: => SND;
connect linel { /* 50 km line ¥/
r=1E-2, h=10.;
Rz = 1 .E~3; 1 = 50.0E3;
SND -> SND; REC -> REC1 }
connect line2 {(/* 100 km line */
r=2E-2, h = 20,;
Rs = 1.E-4; 1 = 100.E3;
SND -> SND; REC -> RECZ }

-> GND }

)

The above code assumes that circuit pi_lina is described
in file “pi_line.cdl”. Three terminals SND, REC1, and REC2
are first declared. Two instances of circuit pi_line are
generated as linel and line2. 1linel is connected
between SND and REC1 as a 50-km line, and line2
between SND and REC2 as a 100-km line. A line model
Pi_line is used in two different places with different
parameters. As mentioned in the first example, this is the
power of modularity. A voltage source E is connected
between SND and the ground.

From those two examples, the advantages of CDL are
summarized as follows. General, reusabie, and maintainable
models can be described using CDL due to its strong
modularity, which provides the mechanism of the building-
block construction of a circuit and the encapsulation of
intermal node, variable, and element names. Line model
pi_line is a good example to show that CDL has an
enough power to describe a library of standard power-system
models. '

IV. TRANSLATOR “cdlparse”

A translator called “cdiparse™ has been developed by the
author. The program parses a CDL file, evaluates
expressions and node connections to build the entire circuit,
and finally translates into netlist-like branch output. The
following is the output of cdlparse when the first example —
double resonance circuit — is parsed.

R, 1, 2, 1.00000E+01
L, 2, 3, 1.00000E-03
c, 3, 0, 1.00000E-07
R, 1, 4, 2.00000E+01

June 20-24, 1999, Budapest — Hungary

34

L, 4, 5, 2.00000E-03
¢, 5, 0, 2.00000E-07
I, 1, 0, 1.00000E+00

number of independent nodes = 5

First comes element type, and two node numbers to which the
element is connected follows. Last comes the value of the
element. One line corresponds to one element. The last line
shows the number of independent nodes for a circuit analysis
program (e.g. for determining the size of the nodal
admittance matrix). This sort of branch output can easily be
read by existing circuit analysis programs.

V. CONCLUSIONS

A new circuit description approach — language approach —
has been proposed : Circuit Description Language (CDL).
The syntax of CDL provides strong modularity which allows
to build a library of standard power-system models. The
power of modularity has been illustrated using the sample
code of example circuits.

The incorporation of mutually coupled elements and ideal
transformer into the CDL syntax is considered as the next
important work. Also, interface with programming languages
may be a future work so that a user-developed model can be
incorporated as a circuit in CDL.

V1. AKNOWLEDGMENTS

The author is grateful to Laurent Dubé of DEI Simulation
Software for his lead to this field of research.

REFERENCES

[1] K. Jensen, N. Wirth, A.B. Mickel, “Pascal User Manual and
Report : ISO Pascal Standard, 4® edition,” Springer Verlag, 1991.

[21 B.W. Kernighan, D.M. Ritchie, “The C Programming Language,
2™ edition,” Prentice Hall, 1988.

[3] B. Stroustrup, “The C++ Programming Language, 3% edition,”
Addison-Wesley, 1997,

1PST '99 — International Conference on Power Systems Transients o June 20-24, 1995. Budapest — Hungary

35

IPST '99 — International Conference on Power Systems Transients o June 20-24, 1999, Budapest — Hungary

36

