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Abstract - This paper presents a combined method of
Modified Predictor-Corrector Iteration and Newton Raphson
Iteration to extend Electromagnetic Transient Simulation to
include nonlinear elements in the electrical network solution.
The resultant non-linear models are efficient, stable, and
more accurate than those using the basic nodal-conductance
approach. The algorithm has been tested using large time
steps, and with simultaneous abrupt changes of the
characteristic of two or more nonlinear elements. The paper
also discusses methods for testing convergence, and compares
this method to results obtained with interpolation and to the
basic nodal conductance matrix solution.

Keywords : nonlinear circuit, transient calculation, Newton-
Raphson iteration, modified predictor-comector iteration,
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I. INTRODUCTION

The nodal-conductance approach (NCA) is the basis of
many Electro-Magnetic Transients Programs such as
EMTP, ATP [1] and PSCAD/EMTDC [2]. Changing
either the conductance or current injection of a component
can be used to approximate non-linear elements. However,
unstable or inaccurate solutions can result when applied to
complicated systems, such as those utilizing HVDC (high
voltage direct current), FACTS (flexible ac transmission
system) or power electronic models (whenever a large
number of nonlinear elements are to be represented). The
inaccuracies occur because switching is limited to occur
only on regularly spaced time step points, or because the
branch impedance or current injections are based on circuit
quantities from the last time step. Linear interpolation
[3,4] can rtepresent non-linear devices using piecewise
linear approximations, and results in stable and accurately
calculated results for any number of non-linear devices.
However, it may be difficult to express all kinds of non-
linear devices in this way. Therefore it is important to find
a more general, accurate and stable representation for
nonlinear elements.

Previous work in this area includes a Predictor-
Corrector Iterative (PCI) method [5]. This method
required the formulation of the conductance matrix G (of
G*V = J) in all time steps and iterations, which results in
long simulation times. It has been also found that the
above method can become unstable on some complex
electric circuits as HVDC and FACTS systems.

This paper presents a nonlinear element represented
using a parallel connection of a piecewise linear
conductance and a nonlinear current source using the

combined iteration method of Modified Predictor
Corrector Iteration (MPCI) algorithm and Newton
Raphson Iteration (NRI) algorithm stably, accurately and
fast. Complex nonlinear elements (like primary arc
models) whose present state cannot be accurately decided
from the previous state are represented in this paper.

This paper demonstrates the proposed algorithm with
various devices and example systems, and compares the
results to results obtained with linear interpolation, basic
NCA solution and measured results.

II. FORMULATION OF NONLINEAR CIRCUIT
A. Presentation of a nonlinear element

PCI [5] requires to calculate the conductance matrix G
{of GV = J) in all time steps and iterations, because a
nonlinear element is presented as only a nonlinear
conductance. This results in huge calculation times, and
the results are unstable on some complex electric circuits
such as HVDC and FACTS systems. But the method
proposed in this paper need not change the conductance
matrix in most time step loops because a nonlinear element
is presented as the parallel connection of a piecewise linear
conductance and a nonlinear current source. Therefore
this proposed method is faster than other iteration methods.

Fig.1 and Fig.2 shows the representation of a non-linear
device as the parallel connection of a piecewise linear
conductance and a nonlinear current source. This can be
modelled as shown in equation (1).

i =val _J;wn (J:mrr =J+‘]non) (1)
where I’ : a nonlinear current source, G: a piecewise
linear conductance. When a target circuit includes some
nonlinear elements, an iteration procedure is required to fi-
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Fig.1 Example case Fig.2 Equivalent circuit
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nd the solution of the following nodal-conductance
equation:

G(O)V(t) = J(2) + J pou (£, (1)) 2
where J(t) : linear current injection vector. In this paper,
the combined iteration method presented after this section
is proposed to get the solution of equation (2).

B. Optimum ordering of nodes

When all elements in the circuit are linear, those
elements are described by the trapezoidal rule of
integration [1], and the equations of such cireuits include
only linear elements and can be expressed in the following
matrix equation:

Gv(t)=J() (3)
where G : linear nodal-conductance matrix, v(t) : node
voltage vector, and J(t) : linear current injection vector. In
this case, G is a constant matrix, and J(t) is time varying.
The triangular factorization of G is performed only once
before advancing to the time step loop, and v(f) is
calculated by backward substitution. At the end of each
time step J(t) is renewed to calculate v(t+At) which is the
node voltage vector at the next time step.

When the circuit includes some nonlinear elements,
which are expressed as nonlinear conductances, G can
depend on many factors, such as the instantaneous voltage
solution v(t) [5]. That is to say, the retriangulation of G is
required whenever the factors change at a time step or an
iterative step. In this proposed method (MPCI) the
retriangulation of G is not required at cach time step and
each iterative step, because the nonlinear elements are
expressed as a piecewise linear conductance and a variable
current injection. The method of the triangular
factorization of G is illustrated in Fig.3.

The ordering proceeds in the following order (as shown
in Fig.3): linear nodes without switches, linear nodes with
switches, nonlinear nodes without switches, nonlinear
nodes with switches. When one or more nonlinear
elements operate at that time step, the portion of the matrix
from the smallest node number involved in the nonlinear
elements to the end must be retriangulated. This ordering
method is closely related to the proposed method in [6].

linear nodes nonlinear nodes

linear nodes S

without switchcs;‘>  triangular factorization
. / from switch operation
linear nodes y. |1

with switches T2* i

triangular factorization
&\ from nonlinear
conductance operation

Fig.3 Optimum ordering of nodes in G

nontinear nodes | [~
without switches

nonlinear nodes T=*
with switches

III. THE ITERATION PROCESS
A. Modified Predictor-Corrector Iterative Method (MPCI)

One of the proposed methods in this paper is MPCI
method. This methed is closely related to PCI method in
[5]. The MPCI method doesn’t require a lot of
reconstitution of G at each time step loop and each
iterative step, because it represents nonlinear elements
differently than the PCI method. The details of MPCI is
illustrated in this section.

The solution of the following equation vI”(t) gives the
first estimation of the iteration ( prediction ):

G(vO () = 3O+ I (e, v(t - A1) (4)
It should be noted that v*(t) is different from the solution
at the previous time step, because J(t} (linear current
vector) has been already updated in (4). The improved
solutions are repeatedly obtained by the following iteration
scheme ( correction ):
G =30 +30, v @) (5)
where k = 1, 2, ... is the number of iterations. When
the maximum difference of an improved solution from the
previous iteration step becomes smailer than a user
specified error constant £ namely,

max‘Av}k")l = maxlv,-(k) uv,(k_')| <& (i:nodeindex) (6)

the v(t) is regarded as the final solution, and we now
proceed to the next time step. If the maximum difference
doesn’t become smailer than & within 2 or ~ times
iterations, we proceed to iteration with NRI methex:.

B. Newton Raphson Iterative Method (NRI)

The multidimensional root finding method by NRI
Method is discussed in [7]. NRI gives us a very efficient
means of converging to a root, if a sufficiently good initial
can be guessed. If it fails to converge, it indicates that the
roots of the solution do not exist nearby.

A typical problem gives N functional relations to be
zeroed, which involves variables x,1=1,2, ... N:

Filxy, %9y, 2y )=0  i=1,2,...,N. )
And each of the functions F; in the equation (7) can be
expanded in Taylor series

X oF,
R+ ax)= R Y 2 05, + ol ®
Jal
where X : the entire vector values x;, F : the entire vector of

functions F,. The matrix of partiai derivatives appearing in
equation (8) is the Jacobian matrix Je:
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oF,
Jejj =L 9
eij = — &)

i
In matrix notation equation (8) is

F(x + &x)=F(x)+ Jc-5x+o(5x2) (10)
By neglecting term of order 5x* and higher and by setting
F(x+8x) = 0, a set of linear equations for the correction &x
that move each function closer to zero is derived
sitnultaneously, namely

Je-8x=-F (11)

The matrix equation (11) in electrical circuits can be
solved efficiently by LU decomposition. The corrections
are then added to the solution vector,

Xnew = Xolg + 6% (12)
and the process is iterated to convergence. When the
maximum difference of an improved solution from
previous iteration step (the maximum of 8x) become
smaller than a user specified error constant €, namely,

(13)

max|&t}‘l <& {i:nodeindex)

the x,.,, is regarded as the solution, and we now proceed to
the next time step.

The construction of the Jacobian matrix (including
some nonlinear elements) is discussed below. The
example case which includes a nonlinear element between
node i and j is illustrated. As in equation (2), the circuit
vector F in (11) is expressed as follows { (14) and (15) ):

Gr'i=GLH +GN GIJ=GLJJ' +GN

G, =G +Gy Gy =Gy +Gy (14)
Ji=dy+dy Jy=Jdp+dy
Gy o Gyl ([N Jy
_ N oot : _ : 15
F Gn b GHG!‘,‘ V' J' ( )

] i

Gp - ijGﬁ Vj Jj
where Gy: the conductance of linear elements, Gy: the
conductance of a nonlinear element, J7: the current source
of linear elements, Jy: the current source of a nonlinear
element. Therefore, the Jacobian matrix is constructed as
the following differential equation (16).

Gll Glr' G!j

dJ: dar.

G, - | G, ——L (., — e
il ( # dV:J [ if dVJ}

df. dr .

o (022 (o)
: g A

(16)

2%
L]

Equation (17) below is derived from equation (14) (see
appendix 1 for details).

drJ; aJ.
Gii__'t—=GLif+i, Gy ——— =Gy +£_,
dv; dv; dv; av,
dJ oy (17)
G _ S = G = dI G o j - - dI
Ji dV,n Lji _de H K dVJ- Lii =7 dV_j

The nonlinear current from node i to j is expressed as:

I=f(Vs“Vj)» V=v-V, (18)
and

a4  d __df (19)
av, dv’ dVv av

Using equations (18) and (19), we can rewrite equations
(16) and (17) as follows:

dr df dar daf
¢ c—— = go—_— G v b——=F ro ———
by, T M T gy TR Ty, T T gy 0
df df dl df
G y ———=(F o G v ————=F . +—
gy, T W gy TH gy, T T
-Gn Gy Gu 1
oF _ df df (21)
W Gy [Gw "'E/‘) (GLU -EF)
i _dr df
LGn (GLjr' “dVJ (GLﬁ + —_dV]_

In (21), the Jacobian matrix can be efficiently
constructed by the differential function df/dv, which can
be calculated analytically or numerically. If the function f
can be expressed analytically like the arrester model and
diode model, the differential function df’dv can often be
calculated by analytical differentiation of f. If the function
f cannot be expressed analytically, the method to
differentiate the function f can be calculated numerically.
The arc model, which can’t be expressed analyticaily, is
illustrated as an example case for numerical differentiation
in the following section.

1V. COMPARISON OF MPCI, NRI AND COMBINED
METHODS

In Table 1, the number of iterations required for
convergence are compared for the MPCI, NRI, and
combined algorithm. The MPCI method converges very
slowly in many example cases, but is very stable and
reaches the approximate solution quickly. Hence this
method is not suitable for complex circuits like FACTS
and HVDC systems. The NRI method converges very

quickly when the solution is close to the root, but can be
very unstable elsewhere, NRI thercfore requires a good
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method to reach the approximate solution. Therefore, the
third method, which uses MPCI method at the initial 2 or 3
iterations, then the NRI method is superior. Such a
combined iteration method has been used in this paper.
This method is stable, fast and accurate. It should be noted
that the proposed scheme does not impose restrictions on
the number and configuration of nonlinear nodes. Also,
because the proposed method does not modify the basic
equation of the nodal-conductance approach, it can be
implemented in existing EMTP-type programs [1-3].

Table.1 The average number of iterations
for the circuits in Fig- 4, 7, and 10.

MPCI NRI MPCI+NRI
Arrester 76.0 2.64 482
Diode 5.17 x 4.00
Arc 194 % 5.17
Features Stable Unstable Stable
Slow Fast Fast
X I NON-CONVergency
V. EXAMPLES

A. Arrester model in an Oscillatory Circuit

An arrester circuit illustrated in Fig.4 is analyzed using
the proposed method. The arrester in the circuit is modeled

1.002 t= 20ms
1.0H 0.1
I sinat L
— 1.0uF B
1o TA T@ T LOWF  0.IpF -

Fig.4 Oscillatory arrester circuit.
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Fig.5 v-i characteristic of arrester-type model
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Fig.6 Calculated result

as a parallel connection of a piecewise linear resistance
and a nonlinear current source. The v — i characteristic is
approximated by v(i} = 3333 x In (0.1 x I + 1.0} or i(v) =
10.0x {exp(0.003xv) - 1.0} as defined in Fig.5. The input
function for iterations is sometimes voltage or current in
different areas of the characteristic, depending on the slope.

Fig. 6 shows the circuit voltage for 4 different solution
methods: NCA original method (At =1us), NCA original
method (At =100ps), EMTDC interpolated solution (At
=100us), and the proposed method (At =100us) . The
calculated result of the original method with At = lus
compares closely with the proposed method which is
solved using a much larger time step.

B. Diode-Bridge Rectifier Circuit

The diode-bridge rectifier circuit illustrated in Fig.7 is
analyzed. The new method models each diode in the
circuit as a parallel connection of a piece wise linear
resistance and a nonlinear injective current source. The
diode v — i characteristic is approximated by v(i} =
81.65x10~ In (51.03 x 10%x 7 + 1.0), or i(v) = 1.95x10
#{exp(12.25xv) - 1.0} as defined in Fig. 8.

99.2uH
88.9mH
96.2uF —_"Nopdei

E=10V

E sinot
I 99.4Q)

Fig.7 Diode-bridge rectifier circuit
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50 i(v)=1.95x10-8 {exp(12.25xv)-1.0}

current(mA)

IIIIJIIIlIIII|

Illlllllll

Ollllzlllll

0.5 1
voitage(V)

Fig.8 Voltage-current (v - i) characteristic of diode

[=1

Fig. 9 shows the circuit voltage and current for 4
different solution methods: NCA original method (At
50us), NCA original method (At =! ms), EMTDC
interpolated solution (At =1 ms), and the proposed method
(At =1 ms) . Fig. 9 shows the actual voltage and current
measured from a physical test circuit. The calculated
results of the original method with At = 50us, the EMTDC
solution solved with a 1 ms time step, and the new
proposed method also with a 1 ms time step compare
closely and match the measured waveforms.
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Fig.9 Measured and calculated waveforms of input voltage
and output current

C. Primary arc model

Farlier work has shown that a primary arc can be
represented by the following equations [8,9,10] :

dg _1¢-_ 22

— T(G g) (22)
i

_n 23

G 7 (23)

The conductance g at time t tends toward the static
conductance G which is determined by the present current
i. The speed dg/dt with which g approaches G is
determined by the arc time constant T.  Various
experimental studies have confirmed that the voltage drop
along the main arc column is substantially independent of
the current, and the value of stationary arc voltage per
length is nearly constant in the arc cycle. It was shown
that the average constant arc voltage gradient is about 15
V/cm over the range of current 1.4kA to 24kA in spite of
some variation. For the primary arc, T and / (the length of
arc) are considered as constant, and T can be given as
following equation:

al

where the coefficient @ is about 2.85x10°? for the primary
arc, I is the peak primary arc current in the first cycle

(which is determined by using a small resistance instead of
the primary arc model).

We are confronted by two problems in this primary arc
model. The first is that the time varying arc conductance g
can not be decided from previous information like v(t-At)
or i(t-At), because of the strong non-linear nature of the arc.
The second problem is that the primary arc model can not
be expressed as piece wise linear approximation like
arrester and diode model. Therefore the method to
calculate the primary arc model by use of the combined
iteration method is proposed. The following equation can
be derived from (22) ~ (24) by the trapezoidal rule and
MPCI rule at the first step.

24r it +42)|
2T+At VI

2T - At
2T + At

gl (6 =g(t—Ap (25)

After the second step, the time varying arc conductance g
is renewed by following equation.

(n-D)
2T-Ar 24t |3(fc) B

(26)
2T+Ar 2T+ Mt ¥i

gin () =glt-An

Where n : iteration times in arc model, k : iteration times in
the main program (combined iteration method). When the
maximum difference of an improved solution from
previous iteration step (the maximum of ig"-g"'| } becomes
smaller than a user specified error constant g, g" is
regarded as the solution of (22), and we now proceed to
the combined iterative method in the main circuit which
has already proposed in the previous section. However,
the function f can’t be expressed analytically like for the
arrester and diode model. It is illustrated that the
differential function df/dv can be calculated numerically.
From (26), L, Vi are derived from the solution of g,
when k = m, and ...,V are derived from the solution
of gmuy when k = m+1. Therefore dffdv is numerically
calculated as (I L)/ (Vimey- Vim).  Numerical
differentiation is normally avoided because of stability
concerns, but was found to be stable and efficient for this
application.

A primary arc model test circuit is illustrated in Fig.10
and is analyzed by using the proposed method. The
primary arc in the circuit is modeled as a parallel
connection of a piece wise linear resistance and a nonlinear
current source. The simulated arc characteristic is shown
in Fig.11. Voltage waveforms are shown in Fig. 12 for the
new proposed method (At =200ps) and the original NCA
method

E sinwt
E=25kV

Fig.10 Primary arc model test circuit
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current(kA)
Fig.11 Primary arc characteristic
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Fig.12 Calculated result

(1pus, 200us). The calculated result by the proposed
method is quite similar to the calculated result of original
NCA method (At =1us).

VI. CONCLUSIONS

An extension to the NCA solution method has been
presented to allow an arbitrary number and configuration
of nonlinear elements in a subnetwork by use of a
combined iteration method. This method has been applied
to arresters, diodes, and primary arc characteristics. The
calculated results agree well with actual measurements
(where available), and with the small time step or
interpolated solution methods. The proposed scheme has
been shown to be accurate and stable even for a large time
step, and can survive simultaneous and abrupt changes
due to nonlinear elements.

This solution method has been made efficient by
employing 2 different iteration techniques (MPCI and
NRI). It is also made efficient by using a piece-wise linear
conductance characteristic in parallel with a current
injection updated during iterations. For complex non-
linear characteristics, it has been shown that the Jacobian
required for NRI iterations can be calculated numerically.

In the future, it is possible that this proposed method
can be applied to other EMTP-type programs because it is
an extension to the basic NCA method.

VII REFERENCES

[1THW. Dommel, “Digital Computer Solution of Electro-
magnetic Transients in Single- and Multi-Phase Networks”,
IEEE Trans., Power App. And Syst, Vol. PAS-88 (4), pp.
388-399, 1969.

(2] Omprakash Nayak, Garth Irwin, and Arthur Neufeld, “GUI
Enhances Electromagnetic Transients Simulation Tools™,
IEEE Computer Applications in Power. Vol.8, No.1, 1995.

[3]P. Kuffel, K. Kent and G.D. Irwin, “The Implementation and
Effectiveness of Linear Interpolation Within Digital
Simulation”, International Conference on Power System
Transients, Lisbon, Portugal, 1995, pp. 499-504.

[4] AM Gole, I1.T Fernando, G.D. Irwin and O.B. Nayak,
“Modeling of Power Electronic Apparatus: Additional
Interpolation Issues”, International Conference on Power
System Transients, Seattle, June 22-26, 1997, pp. 23-28.

[5]T. Noda, K. Yamamoto, N. Nagaoka, A. Ametani, “A
Predictor-Corrector Scheme for Solving a Nonlinear Circuit”,
International Conference on Power System Transients, Seattle,
June 22-26, 1997, pp. 5-10.

{6] H.W. Dommel, “Nonlinear and time-varying elements in
digital simulation of electromagnetic transients”, IEEE Trans.,
Power Apparatus and Systems, Vol. PAS-90, pp. 2561-2567,
1971.

[71W. H. Press, 8. A. Teukolsky, W. T. Vetterling and B. P.
Flannery, “NUMERICAL RECIPES IN C".

[8] A. P. Strom, “Long 60-cycle arcs in air, AIEE Transaction”,
AIEE transactions, Vol. 65, pp. 113-118, March 1946.

[9] T. E. Browne. Jr., “The electric arc as a circuit element™,
Journal of the Electrochemical Society, Vol. 102, No. 1, pp.
27-37, January 1946,

[10] A. T. Johns, “Improved techniques for modeling fault arcs
on faulted EHV transmission system”, [EE Proc. —Gener.
Transm. Distrib., Vol. 141, No. 2, pp. 148-154, 19%4.

VIII APPENDIX
1, Derivation of (17)

(17) is derived from Fig.1, (14) as following equation :

aJ, s + Gy, =V, = ~1]
G:'J'"'d_V::'=GL:‘:‘+GN_ av, :
dal
=Gy +Gy~Gy +—— (A.1}
Lif N N dVi
=Gy +i
dav,

Other equations in (17} are derived in a similar fashion.

IPST '99 — international Conference on Power Systems Transients ¢ June 20-24, 1999, Budapest — Hungary

80



