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Abstract - This paper describes a novel ap-
proach to dynamical modeling of arcing faults
on overhead lines. The proposed technique is a
polyphase generalization of the dynamic phasor
approach from electric drives and power elec-
tronics. This technique is applicable to non-
linear models, and offers distinct advantages in
simulation and control with respect to standard
time-domain models. In a steady-state, the dy-
namic phasors reduce to standard symmetrical
components from AC circuit theory. We present
dynamical models and numerical experiments
that illustrate the capabilities of dynamic pha-
sors in analysis and simulation of arcing faults
in power systems.
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I. INTRODUCTION

Many elements in power networks have been undergoing
profound changes in recent years. This process is pri-
marily driven by a desire to increase efficiency, with con-
comitant reduction in energy costs, in power losses (and
cooling requirements) and in component size. Power
systems have a large number of components connected
in a hierarchical, multilayered structure. The compo-
nents exhibit various types of nonlinearities due to prop-
erties of materials, geometries of associated electromag-
netic fields, and switching modes of operation. The
continuous operation of these systems is made possi-
ble by feedback control. The control performance be-
comes critical for overall reliability when sudden and po-
tentially detrimental transients are triggered by abrupt
changes in the system environment and by load varia-
tions. Thus a precise characterization of such transients
is of primary interest, particularly for emerging protec-
tion strategies that are based on signal processing and
microcontrollers.

The voltages and currents in power networks, elec-
tric drives and power electronic converters are gener-
ally pericdic, but often non-sinusoidal. Dynamics of
interest for analysis and control are often those of de-
viations from periodic behavior. The standard analysis

of power systems relies on simplifications gained by ap-
proximating certain gquantities (e.g., voltages and cur-
rents) as sinusoids (“phasors”), possibly with “slowly
varying” magnitude and phase (often defined in an im-
plicit, heuristic way). This “sinusoidal quasi-steady-
state” approximation is widely used to study electrome-
chanical dynamics, and it is almost invariably included
in software tools for power systems. There are, how-
ever, cases reported in the power system literature when
this type of approximation-leads to incorrect conclu-
sions about stability 1, 2]. For faster phenomena, the
primary tools are time-domain sirmulations that take
no advantage of the particular nominal analytical form
of the variables of interest. Time-domain simulations
are not only a tremendous computational burden, but
they also offer little insight into problem sensitivities
to design quantities and no basis for design of protec-
tion schemes. This type of fundamental analytical prob-
lem is not mitigated by improvements in computational
technology.

The meodeling methodology presented in this paper
builds on an existing, but non-systematic knowledge
base in the field of power networks. Various forms of
frequency selective analysis have deep roots in power en-
gineering in the form of phasor-based dynamical mod-
els, and the main advantage of the analytical approach
proposed here is its systematic derivation of phasor dy-
namics. The idea of deriving dynamical models for
Fourier coefficients goes back to classical averaging the-
ory. The dynamical equations for Fourier coefficients
or dynaemic phasors are {ime-invarient and often non-
linear, and their analytical usefulness stems from the
availability of families of approximations that are based
on physical insights offered by the underlying frequency
decomposition.

Phasor dynamic models are typically developed from
time-domain descriptions (differential equations) using
the procedure that is denoted here as generalized av-
eraging. In the case of nonlinear equations, a key ele-
ment in the modeling process is the development of ap-
proximations to the right-hand side of the time-domain
equations at a particular frequency. These approxi-
mations are based on the method of describing func-
tions [3]. This paper presents analysis and simulations
based on standard time-domain and on dynamic pha-
sor models; the simulations are performed in Matlab.
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Due to their time-invariance, dynamic phasor models
hold promise in speeding-up simulations as they allow
large time steps; our hope is that these models can be
combined with time-domain models in simulation envi-
ronments like EMTP/ATP to achieve improved overall
performance.

The rest of the paper is organized as follows: Section
1I introduces the dynamic phasors for single phase and
polyphase variables; Section III presents two models of
an arcing fault; Section IV contains simulation results,
while brief conclusions are stated in Section V.

II. INTRODUCTION TO DYNAMIC

PHASORS

The generalized averaging that we perform to obtain
our models is based on the property [4, 5] that a (pos-
sibly complex) time-domain waveform z(7) can be rep-
resented on the interval 7 € (¢ — T,t] using a Fourier
series of the form

z(r) = i Xg(t)el 5ot (1)

k==—co

where w, = 2n /T and X, (t) are the complex Fourier co-
efficients, which we shall also refer to as phasors. These
Fourier coefficients are functions of time since the inter-
val under consideration slides as a function of time. We
are interested in cases when only a few coefficients pro-
vide a good approximations of the original waveform,
and those coefficients vary slowly with time. The k-th
coefficient {or k-phasor) a: time t is determined by the
following everaging operaiion:

Xe(¥) = %[iT I(T‘)e—jkw"rd‘r =< z > (T). {(2)

Qur analysis provides a dyramic model for the domi-
nant Fourier series coefficients as the window of length
T slides over the waveforms of interest. More specifi-
cally, we obtain a state-space model in which the coeffi-
cients in (2) are the state variables. Note that when our
original waveforms z(-) are complex-valued, the phasor
< = >_ equals < z* >} (where z” is the complex
conjugate of r). However, in the general case there
are no other relationships among the +k-th dynamical
phasor of the waveform < £ >, the —k-th phasor
< ¥ >_g, and the +k-th phasor of the conjugate wave-
form < z* . Our interest in complex-valued wave-
forms stems mostly from their use in applications - for
example, complex space vectors [6] are widely employed
in dynamical descriptions of electrical drives. In the
case of real-valued time domain quantities 2(t) = z*(t)
and X_; = X, so (1) can be rewritten as a one-
sided summation involving twice the real parts ® of
Xy (t)ef¥«t for positive k. If in addition X time-
invariant, the standard definition of phasors from circuit
theory is recovered.

A key fact for our development is that the derivetive
of the k-th Fourier coefficient is given by the following
expression:

dX, [/ d
e = — —jk 3
dt <dtz>k J wSXk ( )

This formula is easily verified using (1) and (2), and
integration by parts. Another straightforward, but very
irnportant result is that the phasor set of a product of
two time—domain variables is obtained by a convolution
of corresponding phasor sets of each variable.

The definitions given in (1) and (2) can be adjusted
for the analysis of polyphase systems [7]. Let us consider
the three phase (a—b—c¢) case, as the general polyphase
case follows similarly. Following the standard notation,
we introduce a = ejgsl; then «® = a*. Then a time-
domain waveform can be written as :

g i ) 1 1 1 1
o | (1) = dtwr 1| o0 o 1
T, f=w—co V3 a o 1
~—
Xp.t
Xne | (1) (4)
Xz,t

and we denote the square transformation matrix with A.
It can be checked that the A is unitary, as A~! = A¥,
where H denotes complex conjugate transpose (Hermi-
tian). As commonly encountered in transforms, scaling
factors other than 1/,/3 are possible in the definition of
matrix A, but they require adjustments in the inverse
transform. The coefficients in (4} are

Xp,£ 1 1 R Ta
Yoo |@= 3 [ et 4k | s ) (e 5)
Xt Lintd Te

The equation (5) defines dynamical positive X, ¢, neg-
ative X, ¢, and zero-—sequence X, ; symmetric compo-
nents at frequency £ w,, as

d Xot u < ad—:ra(t) >y
E Xn,t (t) = A < E—Ib(t) >
Xz,l < E{Ic(t) >
Xp,t
—jlw, Xn,t (t) (6)
Xz,t

Among the advantages of the proposed definitions are
the compatibility with conventional symmetric compo-
nents in a periodic steady-state, and a similarity to the
single-phase case. Observe that (6) is a vector general-
ization of (3).

In applications, we are interested in cases when a
finite (and preferably small) number of dynamic pha-
sors is used in (4). From the presented definitions,
it follows that the dynamical symmetrical components
of complex-valued polyphase quantities are related as:
< E =< T > _, . < & >pg=< Tt > _,, and
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<z >;¢=<z* >} _, Inparticular, in the case of real-
valued waveforms, £ in (4) ranges over the same posttive
and negative harmonics and X, = X}, _,, Xn¢ =
X;,—t and X, = X7 _,. Thus again the two sided
summation in (4) can be replaced by a one-sided ver-
sion, so that for example

%m[g(xp,t(t)+Xn,,(z)+Xz,,(t))ef‘”'*]—xz,o

ro(r) =
The last term takes care of accounting at £ = 0, when
X0 = X5 0 and X, o is real. Note that in the case
of time-independent symmetric components, the stan-
dard definition from polyphase circuit theory is again
recovered.

I11. MODEL OF THE ARCING

FauLrt

A. Single Phase Model

We first consider a single-phase description proposed in
[8] as a model for a arcing fault on an overhead line.
The only nonlinearity comes from the voitage drop on

R L

ww—J-

Figure 1: Equivalent circuit for the faulted phase.

the arc which is modeled as a DC voltage whose polarity
reverses as the fault current changes sign:

(7)

Then we can write the following equation for the equiv-
alent circuit in Fig.1 (with the explicit time-dependence
suppressed to streamline the notation):

va(t) = Vasign(ia(t)).

i .
L% = —(R+ Ry)is — Vasign(iy) + v, — L%- - Rip

v

(8)
where ©(-) is a known function of time (evaluated from
the pre-disturbance operating point).

Let us assume that i, is well approximated by its first
(fundamental) harmonic; then from (3) we can write a
differential equation for the compler dynamical phasor

O

Ia,i as:
LdIm

2 .
2l = (R Ro)lag — Ve ¥ <y

~

<dfu7¢_it> "
(9)

The only challenge in evaluating < diajfy; >, is in cal-
culation of the first harmonic of the sign function; this
can be accomplished either from the definition (2), or
from the tables of describing functions which are avail-
able for most nonlinearities encountered in control en-
gineering practice [3]. Note that there is no need to
write the equation for I, _;, since i,(-) is real val-
ved and I, _1(t) = I (t), so the time-domain esti-
mate of 7; can be extracted from I,; only. We can
rewrite complex equation (9) as two coupled real equa-

—jLw,Ia,I.

tions — let Rf = R+ R,s, Iny = a + jf and
<v=Viz=<ov>F +j<v>l:
dee 2V, o R
il —Rro + L, - - —"-——"*m+<v>1
ds 2V, B
L— = - - - _
o R — Lw,a — — o
+ <>, (10)
Equation (10), together with the “output” equation

(compare with (1))
ia(t) = 2R{(a + jB)e "] (11)

can be used as an approximation of {9). In the next
seciion we show that this is indeed a very good approx-
imation. Its advantages include: 1) additional analyti-
cal insight - for example, a standard steady—state pha-
sor diagram can be derived from (9) by setting the time
derivagive to zero (see Fig. 2}, revealing a constant term
aligned with the fault current phasor; 2) slow temporal
variation of I ;, which has a potential to translaie into
efficient numerical simulations.

j Lms Ia,l

2V, .
Rrly —) arg(la1)

Figure 2: Steady-state (standard) phasor diagram.

B. Symmetrical Component Model

The symmetrical component model presented on [8] in-
troduces two additional parameters - zero-sequence re-
sistance Ry and inductance Lo, while positive and neg-
ative sequence resistance remain & and L. Let £ denote
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the diagonal (3x3) matrix diag([L L Lo]) and R denote
the diagonal matrix diag([R + R, B+ R, Ro + Ra)).
Then the time-domain symmetric component model
from [8] can be written as

d ip ip 0 vp
ﬁE in | =R | in | — 0 +| vn
iz iz Vasign(i;) vz

(12)
Note that in (12) the sign of voltage drop due to the arc
is made dependent on the sign of the zero component
current i, while in (7) the sign depends on the total
fault current i, + in + ¢;. For typical parameter values,
the approximation is quite small [8]; it also decouples
the component equations in (12).

If we assumne that all symmetric components are well
approximated by their fundamental dynamic phasors,
we obtain the following set of three decoupled complex
equations:

d Ip,l . Ip’l
LE Ina = —(R+jw,L)| Inp
Iz,l Iz,l
[ 0
— 0
|
- Vo
+ Vai (13)
| Vi

The time-domain waveforms for phase quantities corre-
sponding to (13) are obtained from (4).

IV.

In our simulations we use data for a 110 kV line taken
and inferred from [8]: V, = 1.5kV, R+ R, = Ro+ R, =
209, Lw, = 10Q, Low, = 30Q, iy = 7004, V| =
60.5kV, v, = 44kV, v, = 0, v, = 28kV. We consider
the single-phase arcing fault that develops in phase a at
t = 0 at which point the phase current equals if.

In Fig. 3 we display the transient responses for the to-
tal current in the faulted phase from (8) (top panel) and
(13) (bottom panel); the discrepancy is below 1% at any
point in time (and thus hardly visible), demonstrating
the quality of the dynamic phasor approximation. In
Fig. 4 we compare the actual arc voltage (solid line) with
the fundamental harmonic approximation (dashed line)
which is used in the dynamic phasor model (9). Note
that while the approximation is not accurate point-wise
in time, the effects of the arc voltage on current are
accounted very well, as seen in Fig. 3.

For the -symmetric components model, we first com-
pare in Fig. 5 the transient responses for the total cur-
rent in the faulted phase from {12) (top panel) and (9)
(bottom panel); the discrepancy is well below 0.5% (and
thus barely visible in any reasonable magnification), es-
tablishing high quality of the dynamic phasor approxi-
mation. The zero component of the fault current is cal-

SIMULATION RESULTS
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Figure 3: Total fault current: time-domain model (top
panel) and dynamic phasor model (bottom panel).
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culated with a similar accuracy when the phasor model
(13) is used instead of the time-domain mode} (12). In
Fig. 6 we quantify the approximations introduced in
(12) by using sign(i;) instead of sign(i, + in + i:);
while there are discrepancies, their effects on the over-
all transient are quite small.

V. CONCLUSIONS

The paper describes a novel approach to dynamical
modeling of arcing faults on overhead lines. The pro-
posed analysis and simulation technique is a polyphase
generalization of the dynamic phasor approach, and it
is applicable to nonlinear models. The procedure offers
distinct advantages in analysis and simulation with re-
spect to standard time-domain models. It‘also builds on
engineering intuition, as dynamic phasors become stan-
dard phasors or symmetrical components in a steady-
state. Presented dynamical models and numerical ex-
periments illustrate the capabilities of dynamic phasors
in analysis and simulation of arcing faults in power sys-
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Figure 5: Total fault current: time-domain model (top

panel) and dynamic phasor model (bottom panel).
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Figure 6: Total fault current (solid line} and the zero
sequence current (dashed line).

tems.
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