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Abstract - This paper presents an artificial neural network
(ANN) based digital relay algorithm for high impedance
fault detection in distribution systems. A stochastic HIF
model was simulated by using MODELS in EMTP, and the
relay was trained to recognise the arcing characteristics of
high impedance faults (HIFs). The input signals to the relay
comprise low order harmonics of the three phase residual
quantities and symmetrical components, which are
calculated and fed to perceptron and backpropagation
based neural networks. Digital sampling and anti-aliasing is
incorporated, as well as }0% random noise. The
performance of the relay was verified in simulations of
different distribution systems and in the face of several
potential confounding factors, and the relay was found to
perform well. Since only low order harmonic signals are
used, special instrument transformers would not be
required, and this is of significant advantage over relays
that propose to use the high frequency characteristics of
arcing faults.
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1. INTRCDUCTION

High impedance faults are faults that do not draw
enough current to operate conventional overcurrent
protective devices (e.g. fuses, reclosers, relays). Unlike
other faults that result in a high fault current, HIFs give a
very low fault current with typical magnitudes ranging
from 40A to 100A. Consequently, conventional non-unit
detection will either result in false trips or totally fail to
detect the presence of the faults. Although only a few
percent of the faults are high impedance faults, the failure
of HIF detection can lead to potential hazard to human
beings and potential fire.

HIFs often occur when an overhead conductor
breaks and falls to the ground or a tree. Usnally the surface
the downed conductor in contact with has a poor
conductivity and arcing is involved. The resulting current
and voltage waveforms are often characterised by cyclical
patterns and distortions caused by the arcing and/or
nonlinearity of the fault impedance.

Some detection schemes have been proposed [1-
5] which are based on iractal techniques, digital signal
processing, neural networks, high frequency noise pattern
and dominant harmonic vector. They offer potential
solutions to the problems currently associated with
conventional schemes. However direct calculation of
fractal dimensions is not effective owing to the relatively
short data sets available for estimation. The use of high
frequency harmonics is not practicable owing to the
filtering by substation instrument transformers.
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ANN based detection schemes offer robust
relaying because of its ability to match pattern and tolerate
noise. Moreover, these schemes also provide the potential
for on-line training and customisation using actual field
HIF data. In this paper, an ANN based digital relaying
scheme is proposed which evaluates the low order
harmonics of residual quantities and symmetrical
components. Digital relaying was fully simulated by
incorporating sampling, anti-aliasing and random noise. A
stochastic high impedance fault model is also presented.

II. ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a dynamic system
with one-way interconnections. Its invention was first
inspired by the actual learning process taking place in
human brains. An ANN simulates this complex learning
process. Perceptrons belong to nonbiological class of ANN
and is one of the biggest branches in ANNs. The simplest
perceptron is a single layer network whose weights and
biases can be trained to produce a correct target vector
when presented with the corresponding input vector. The
advantages of using perceptron lie in their use as
calculation tools and not in the insight they give to neurat
operation. Back propagation, branches from perceptron {6],
was created by generalizing the Widrow-Hoff learning rule
to multiple layer networks and nonlinear differentiable
transfer functions. Indeed, both perceptron and back
propagation are excellent tools for pattern classification.

Representative  distribution  systems  were
modelled using ATP-EMTP, and the MATLAB ANN
Toolbox was selected for the implementation of perceptron
and back propagation because of its simplicity and
flexibility. The paper is aimed to show the feasibility of
HIF detection using low order harmonics so the complexity
of the neura! networks is not of top priority. In fact, it was
found that the ANNs from the ANN Toolbox could both be
trained and verified satisfactorily.

Perceptron: The perceptron network is trained to respond
to each input vector with a corresponding target output
vector whose elements are either O or 1. The perceptron
learning rule is applied to each neuron in order to calculate
the new weight and bias. Convergence on a solution in
finite time can be obtained if a solution exists. The
perceptron neuron, which has a hard limit transfer function,
is shown below in detail and in abbreviated notation as in
Figure 1.

Each external input is weighted with an
appropriate W, and the sum of the weighted inputs is sent
to the hard limit transfer function, which also has an input
of 1 transmitted to it through the bias. The transfer function
returns a logic 0 or 1. The hard limit transfer function is
shown in Figure 2.
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Back propagation: In MATLAB, the back propagation
learning rules are to adjust the weights and biases of
networks so as to minimize the sum squared error (SSE) of
the network. This is done by continually changing the value
of the network weights and biases in the direction of
steepest descent with respect to error. This is called a
gradient descent procedure. Changes in each weight and
bias are proportional to that element’s effect on the sum-
squared error of the network. Figure 3 shows an elementary
back propagation neuron with R inputs.

In the actual implementation of perceptron and back
propagation, the basic structure of the network consists of
at least one input layer, one output and one hidden layer.
More complicated classification usually requires more than
one hidden layer with more neurons to match the inputs to
the appropriate outputs.

Instead of hard limit function, log-sigmoid function as
shown in Figure 4 was employed as the transfer function in
the hidden layers. The main purpose of using the log-
sigmoid function is to limit the cutput in the range of O

to 1.

Ill. DETECTION SCHEMES

Perceptron and back propagation are renowned
for pattern recognition. The aim here is to demonstrate that
with praoper training, the ANNs can acquire HIF detection.
The networks were trained by feeding them with input
vectors and the corresponding target vectors. An input
vector is one consisting of magnitudes of low order
harmonics, determined through a Fourier transform, which
are considered to be able to reveal the presence of HIFs.

The data in the training set were obtained from
simulation results based on a typical distribution system as
shown in Figure 5. Tt depicts the sample study system of a
radial distribution feeder with linear, nonlinear, solid state
loads, voltage correction capacitor banks and an equivalent
HIF arc model. Since disturbances resulting from HIFs
may resemble those from other contingencies inherent to
distribution systems such as capacitor switching and single
phase load switching, it is therefore necessary to include
these confounding factors in the training cases to ensure
that the ANNs will not be confounded even under a high
level of ambient harmonics.

Digital simulations were performed using EMTP
for different types of faults, fault location and other
contingencies such as capacitor switching, single phase
load switching, etc.

V. STOCHASTIC HIGH IMPEDANCE FAULT MODEL

The random pature of arcing during high
impedance faults is implemented in the simulation through
MODELS. A MODELS-controlled type-13 switch is
connected to ground through the fault resistance Ry which
has a different value in different data cases 1o produce a
variety of fault current magnitudes. The simulation of arc
instability is done by using the random number generator in
MODELS. The values for fault arc voltage and extinction
period are stochastically chosen out of a population of
predefined values. The switch is open initially and it closes
shortly after the start of the compilation. Following the start

of the fault, a random value of arc voltage is chosen
randomly to account for the stochastic variables related to
arc voltage, including the nature of the distance between
the transmission line and the object it is touching (e.g. a
tree). Since the fault resistance is almost purely resistive,
the fault voltage is almost in phase with the fault current.
This implies that the voltage magnitude is relatively small
at zero-crossings of the fault current, and the arc
extinguishes when arc voltage gets larger than the system
voltage. The MODELS routine keeps monitoring the
systern voltage of the faulty phase and the switch reopens
once its absolute value gets lower than the corresponding
arc voltage. The extinction period begins and an extinction
duration is statistically chosen. The switch recloses after
the extinction duration and another cycle begins with a new
set of randomly chosen variables. The stochastic fault
current is shown in Figure 6.

V. TEST CASES

Data for training were obtained by simulation based on the
distribution system in Figure 5. A total of 30 test cases
were built for training and another 23 cases were built for
verification. Contingencies which may confound the relay
include capacitor switching, single phase line switching
and nonlinear load switching. The different events which
were used for training and verification of the neural
network include:

1. Capacitor switching at the {ine receiving end.
Capacitor switching at the line sending end.
Single phase load switching at the line receiving end.
Non-linear load switching at the line receiving end.
High impedance fault at the line sending end.
High impedance fault at the line receiving end
High impedance fault at the middle of the line.

Each of the 30 training cases has different
combination of events and values of circuit parameters.
The wvalue of the fault resistance is also different in
different cases. The distribution system of Figure 5 was
used for training, while for verification, 15 cases were built
from the distribution systems shown in Figures 5, 7 and 8.
To further test the versatility of the trained ANNs, HIF
current was simulated using simplified 2-diode model [8]}
and erratic fault model {9] in 8 cases in the verification set.
These fault currents are shown in Figures 9 and 10.

VI. CHOICE OF INPUT SIGNALS

NoWAWN

HiIFs are generally non-symmetrical in nature.
Residual quantities and symmetrical components were
considered likely candidates because they are well known
to represent the unbalance of power system. In order to
find the best candidates, other quantities such as phase
currents, phase voltages were also used at first. But they
did not seem to contain substantial information for HIF
detection and the chosen neural networks could not be
trained successfully. To enhance the practicality of the
detection scheme, low order harmonics were given priority
over high order ones and the number of inputs required
were kept as small as possible. After trying different
combinations of the likely candidates, two sets of candidate
inputs were selected. The first one consists of the
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magnitudes of the first and the third harmonics of residual
current (Ig), the second harmonic of residual admittance
(YR, defined as Ig/Vg), the first and third harmonics of
residual voltage (V) and the second harmonic of residual
power (Py defined as IxVg). The second set comprises the
magnitudes of the third harmonics of negative and zero
sequence current and voltage (L3, Ipa, V.3 and Vgs).

VII. DIGITAL RELAYING

Digital relaying was simulated through the
incorporation of sampling, anti-aliasing and random noise.
Different sampling rates were used for digitisation and anti-
aliasing filter, which is associated with the sampling
process, was incorporated in the simulation circuit.
Random noise was added to the input signals before they
were fed to the ANN.

Results show that at least 20 samples had to be
taken in one power cycle to result in recoganisable signals at
power frequency, i.e. 20 x 50 = 1kHz for 50Hz signals.
The highest harmonic used is third harmonic and therefore
a sampling rate of at least 3kHz was required. To enhance
the performance of the ANNs, the final sampling rate
adapted is 4kHz.

Anti-aliasing filter was implemented as a 2-stage
RC low-pass filter with a cut-off frequency of half the
sampling frequency, i.e. 2kHz. The ladder realization is
shown in Figure 11.

During the AD process, the resulting signals are
prone to different kind of errors. The total error altogether
can be treated as a random process. To take this error into
account, a 10% random noise was added to all outputs
from the ADC. The effects of anti-aliasing filter an a phase
voltage and the effects of anti-aliasing and noise on the
outputs from ADC are shown in Figures 12, 13, 14, 15, 16
and 17.

Vill. ANN TRAINING

Both perceptron and back propagation were used
for training. Both were successfully trained and verified.
Perceptron involves a less complicated network structure,
but its applicability is limited by the fact that its outputs
can only take on two values: either O or 1. On the other
hand, back propagation involves a more complex network
architecture and gives outputs in a defined range which
makes further analysis feasible.

In MATLAB, the implementation of ANNs is
performed by means of matrix manipulation of the inputs,
outputs, weights and biases vectors. Vectors from a
training set are presented to the networks sequentially. If
the network’s output is correct no change has to be made.
Otherwise the weights and biases are updated based on the
network’s training algorithm. The entire pass of all the
input vectors is called an epoch.

Effective training of an ANN requires that all the
vectors in different Tows span similar numerical ranges. In
this particular case, the required range of the elements in
the input matrix is —1 to +1. The scaling for the selected
magnitudes of residual quantities is Iz X 10, Yr / 100, Vg X

100, P x 100 and that for symmetrical components is I x
10, Iz x 10, V.3 x 100 and Vg3 x 100.

Apart from scaling, the choice of ANN
architecture also facilitates the convergence of the solution.
For perceptron, a one-layer network was employed. For
feed forward networks, the number of hidden layers
required is dependent on the complexity of the input and
output vectors in the training set. Three logsigmoid hidden
layers with 15 neurons in each hidden layer was found to
be the optimum network structure. However, plain back
propagation was too slow to achieve an error goal of 0.001.
In some cases it did not even converge. The pitfalls of back
propagation are mentioned in reference [10). Nevertheless,
the MATLAR toolbox provides some ways to improve the
performance of back propagation. The use of momentum
can prevent the solution from being trapped in one of the
local minima and hence facilitate the reaching of the global
minimum, Adaptive learning rate makes use of delta
correction algorithm and attempts to keep the learning step
size as large as possible while keeping learning stable. The
improved network achieved the ermor goal of G.001 after
130 epochs with an initial learning rate of 0.4.

1X. TRAINING RESULTS

The trained network was verified with a
verification data set comprising 23 cases. Logic 0 and logic
| represent the absence and presence of the fault
respectively. Cases in the verification set have either
different parameters using the same distribution system as
in the training set or distribution system with completely
different configuration. The success rate of verification was
found to be 100% with a maximum error of 0.001. Both
sets of candidate inputs gave satisfactory verification
results with symmetrical components giving more reliable
and accurate outcomes.

X. TRIPPING CRITERIA

Faor perceptron, outputs can only be 0 or 1. For
back propagation, however, outputs can range from 0 to 1.
In general, outputs equal to or more than 0.9 are regarded
as an indication of the presence of HIF and the relay trips,
while the outputs equal to or less than 0.5 are regarded as
an indication of the absence of the fault. When the output is
in the range of 0.5 t0 0.9, a warning signal is issued and the
operator will inspect the power system to judge what action
should be taken.

Although the trained network could verify all
those cases in the verification set, the network may still be
confounded by contingencies which the network never
encountered before. A simple threshold relay tripping
criterion can be based on the number of HIF relay faulty
classifications in a continuous pericd of ten cycles. The
threshold of five positive identifications in ten consecutive
cycles will result in tripping.

Xl. CONCLUSIONS

The paper presents a practical application of ANN
in HIF detection making use of low-order harmonics of
residual quantities or symmetrical components as the inputs
the ANN. The proposed ANN atgorithm has been shown to
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be an effective relaying scheme that can be readily
implemented using available ANN hardware chips or
software. The trained ANN reacts promptly to HIFs and
has a high success detection rate. The relay scheme can be
trained using realistic data from digital computer
simutation or field measurements. It can be retrained on-
line using actual field measurements and can be
implemented using available DSP and parallel hardware.
The proposed detection scheme only utilises low harmonics
as inputs which greatly enhances its feasibility and
flexibility by avoiding the use of expensive specialised
instrument transformers. :
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Fig. 4. The log-sigmoid function [7]

IPST '99 - International Conference on Power Systems Transients » June 20-24, 1999, Budapest — Hungary

238



SMVA
generator load b3 75%*
50 MVA
25kV 25 kv 10 km lineg 10 km lmel

wobe, | linear 6-pulse

Toad rectifier
Fig. 5. Distribution system for training
100,
20
o
a
20 33-kV FEEDER, 20 25-kVA, 3-ph.
£ o . MILES LONG § LOAD
= TERNATOR a 6,6kY, 0.8 LAG.
B R = (1.2 ohm/ph /mile,
-40 X =0.3 ohnv/ph./mile
-60) 4000-kV A
) TRANSFORMER
. FR=3 TX=4
10 002 004 006 @08 01 042
t[s]
Fig. 6. Stochastic HIF current Fig. 7. Distribution system for verification
6.75% 6.75%
FANPN A A
S00MVA .
30km O/H line
1
%KV 132KV T i 32KV 33kv
100MVA 100MVA PHQ
S0MVA
08PF
Fig. 8. Sub-transmission system for verification
HIF cutrent I W
50 T T T T 20 -
ﬂ n
siman
< ] w
3.
-
_GD i L 1 A A U
9 [L-5) .02 lﬂ.ﬁﬂ 0.04 0.08 .06 200
time 4 [} w i 0 0 LN |

Fig. 9. Fault current by simplified 2-diede fault model Fig. 10. Fault current by erratic fault model

[PST '99 — International Conference on Power Systems Transients » June 20-24, 1999, Budapest — Hungary

239



5Q 100

A —— AN —T—

406 L —— 4061—

Fig. 11. Two-stage low pass filter

% 4

,X10 x10

N
& -
tn [~ ﬁ Pt in N

.
-

prase A sending vokaga [V]

15
% o= o0 o0 om 01 o % om % om 0m o1 o
tre{s] tmefs)
Fig. 12. Sending voltage without filter Fig. 13. Sending voltage with filter

08f

(=]

2ero sequence currert [p.u)
[=]
b

041

o opz 004 obs 008 01 042 ) 002 004 008 008 01 012
me [s] time [s]

Fig. 14. 0-sequence current without filter Fig. 15. 0-sequence current with filter

0 Q02 0.04 Q.06 008 01 012 0 0.02 0.04 0.06 0.08 0.1 012

fime [s] time [s}
Fig. 16. 0-sequence current without noise Fig. 17. O-sequence current with noise

IPST '99 — International Conference on Power Systems Transients ¢ June 20-24, 1999, Budapest - Hungary

240



