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Abstract — Several solutions have been proposed to solve ‘

the equations of multiconductor overhead lines in the time
domain taking into account the frequency dependence of
their parameters. These solutions can be classified into two
categories : modal domain and phase domain. This paper
presents a summary of the main works in this field with
emphasis on those approaches which have been
implemented in an EMTP-like tool.
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L INTRODUCTION

Two types of time domain models have becn developed
for representing overhead lines :

-+ Lumped-parametsr models, that represent transmission
gystems by lumped elements whose values are calculated
at a single frequency

« Distributed-parameter models, for which two categories
can be distinguished, constant parameter
frequency-dependent parameter models. g

“The first type of models is adequate for steady-state
calculations. The second type are the most accurate models
for transient calculations as they take into account the
distributed nature of parameters and consider their
frequency-dependence.

A significant number of papers dedicated to analyze the
frequency-dependence behaviour of overhead lines for
digital simulation has been presented during the last 40
years.'l'hcﬁxstpaperswercpublisheddmingthclatc
1960's and early 1970's. Most approaches were aimed at
solving transmission-line equations using a time domain
solution and were based on the modal theory [1] : multi-
conductor line equations are decoupled through modal
transformation matrices, so that each modE can be
separately smdied as a single-conductor line [2] - [11).
However, the solution of line equations can be also based
on a phase domain formulation, or a combination of modal
and phase domain solutions [12] -[24].

Some parts or effects in an overhead line can have an
jmportant influence on its transient performance. The
concept of nonuniform line includes the coronma effect,
which is a source of attenuation and distortion of surges and
overvoltages in overhead lines.

This paper presents a summary of the solution methods
proposed up to date for digital calculations of
electromagnetic transients in multiconductor overhead lines
with uniform and frequency—dependent parameter. Due to
space limitation the emphasis is put on the most recent work
and those solutions which have been implemented in an
EMTP-like ool [25].
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IL OVERHEAD LINE EQUATIONS -

Fig. 1 shows the reference frame and the equivalent
circuit of a differential section of a single-conductor
overhead line.
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Fig. 1. Single-conductor overhead line.

Thctimcdomainequationsofthislinecanbecxpmsedas
follows

_vxt) . di(x,t)
e Rx(x,t)+L——at (1)
_oi(x, 1) _ ov(x,t)
o —Gv(x,t)-t-C———at @

where v(x,t) and i(x,t) are the voltage and the current of the
linc.R,L,GandCarelhelineparametascxpressed in per
unit length These parameters arc frequency-dependent,
althoughCmnbeassumedoonstant,andGmheneglected.

Given the frequency dependence of the series parameters,
the approach to the solution of the line equations, even in
transient calculations, is performed in the frequency domain.
The behaviour of a multiconductor overhead line is described
in the frequency domain by the two following matrix
equations

-0 21, @) @)
2O - vV, @) @

where Z(w) and Y() are respectively the series impedance
and the shunt admittance matrices per unit length. The
general solution of these equations can be expressed as
follows

1, (@) = €T (@) +e* "V, (@) (5)

V(@) = Y3 @1, @)~ e "L @) ©)
being I{w) and Ty(w) the vectors of forward and backward
travelling wave currents at x=0, I'(w) the propagation
constant matrix and Y.(w) the characteristic admittance
matrix

T©@)=+YZ NG
Y. (@) =[(YZ)"Y ®)

I{w) and I, (@) can be deduced from the boundary
conditions of the line. Considering the frame shown in Fig. 2,
the solution at line ends can be formulated as follows
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Two approaches have been used to cope with this problem
- constant and frequency-dependent transformation matrices.
a) The modal decomposition is made by using a constant real
transformation matrix T calculated .at & user-specified
frequency, being the imaginary part usually discarded. This
has been the traditional approach for many years. It has an
obvious advantage, as it simplifies the problem of passing
from modal quantities to phase quantities and reduces the

amber of convolutions to be calculated in the tme °

domain, since Ty and T; are real and constant. Differences
between methiods in the time domain implementation based
onﬂlisapproachdifferﬁ'omthewayinwhichthc
characteristic admittance function Y and the propagation
function exp(-yl) of each mode are represented. The
characteristic admittance function is in gerieral very smooth
and can be easily synthesized with RC networks. To
evaluate the convolution that involves the propagation
function, several alternatives have been proposed :
weighting functions [2], exponential recursive convolution
[3], [4], linear recursive convolution [5], modified recursive
convolution [6], [7]. A recent work uses the constant
Clarke’s transformation matrix for passing from model
domain to phase domain, and represents the frequency
dependence of uncoupled line modes by a cascade of
synthetic n-circuits [8].

b)'I‘heftequencydcpendenccofthcmodaluansformation
matrix can be very significant for some untransposed
multicircuit lines. An accurate time domain solution using
a modal domain technique requires then frequency-
dependent transformation matrices. This can in principle
be achieved by carrying out the transformation between
modal and phase domain quantities as a time domain
convolution; with modal parameters and transformation
matrix clements fitted with rational functions [9], [10],
[11). Although working for cables {9), it has been found
that for overhead lines, the elements of the transformation
matrix cannot be always accurately fitted with stable poles
only [11]. This problem is overcome by the phase domain
approaches.

3.2 Phase domain technigues

Some problems associated with frequency-dependent
transformation matrices could be avoided by perfarming the
transient calculation of an overhead line directly with phase
quantities. A summary of the main approaches developed
with this purpose is presented below.

a) Numerical convolution. Initial phase domain techniques
[12], [13] were based on a direct numerical convolution in
the time domain. These approaches are, howsver, time
consuming in simulations involving many time steps. This
drawback was partially solved in [14] by applying
Ametani’s linear recursive convolution to the tail portion of
the impulse responses.

b) z-domain approaches. An efficient approach is based on the
use of two-sided recursions (TSR), as presented in [15].
The basic input-output in the frequency domain is usually
expressed as follows

¥(s) = B(s)u(s) (33)

Taking into account the rational approximation of H(s),

equation (33) becomes

e’

¥(s) =D (N(s)u(s) (34)
being D(s) and N(s) polynomial matrices. From this
equation one can derive

D(s)y(s) = N(s)u(s) (35)
This relation can be solved in the time domain using two

_ convolutions

IDY = Y Nyu,, (36)
=0 prars :

The identification of both sides coefficients can be made
using a frequency domain fitting, sec [t5] for more
details.
A more powerful implementation of the TSR, known as
ARMA (Auto-Regressive Moving Average) model, was
presented in {16], [17] by explicitly introducing modal
time delays in (36).
M.Athhdappmachisbasedons-
domain fitting with rational functions and recursive
convolutions in the time domain. Two main aspects are
issued : how to obtain the symmetric admittance matrix, Y,
and how to update the current source vectors. These tasks
imply the fitting of Y (w) and H(w).
The clements of Y.{w) are smooth functions and can be
casily fitted. However, the fitting of H(w) is more difficult
since its clements may contain widely different time delays
from individual modal contributions; in particular, the time
delayofthegroundmodediﬁu'sﬁ-omthoseoftheaaial
modes. Some recent works have considered a single time
delay for each element of H(w) 18], [19]. However, a very
highorduﬁtﬁngcanbenmmryforthcpropagaﬁon
matrix in the case of lines with a high ground resistivity, as
an oscillating behaviour can result in the frequeacy domain
due to the uncompensated parts of the time delays. This
pmblununbesolvedbyincludingmodalﬁmedelaysin
the phase domain. Several line models have been recently
developed on this basis, using polar decomposition [20];
expandiugﬂ(w)asalimrcombinaﬁonofthcmmml
ion modes with idempotent coefficient matrices
[21]; or calculating unknown residues once the poles and
time delays have been precalculated from the modes, in the
so-called universal line model (ULM) [22]. For a
discussion on the advantages and limitations of these
models see [23]. .
Non-homogeneous models. The previous approaches were
based on equations (13)«(16) and the equivalent circuit
shown in Fig. 3, the goal in all cases was to derive a
multiterminal decoupled Norton equivaient which would
be interfaced to the nodal admittance equations of the full
system. Overhead line parameters associated with external
electromagnetic fields are frequency independent. That is,
the series impedance matrix Z is a full matrix which can
be split up as follows
Z(0)=Z,, (0) + joLy G
where
Z,.=R+joAL (38)
Elements of L., are related to the external flux and
frequency independent, while clements of R and AL are
related to the internal flux and frequency-dependent
Finally, the elements of the shunt admittance matrix
Yw)=joC 39
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1, (0) = Y, @)V, (©) - B, (®) 9
B, (0) = HO)[Y.(@)V,(©) +1,()] (10)
1,(0) = Y,(®)V,(0)-B_ (@) an
B_(0) = H®)[Y,(@)V, (©)+1, ©)] (12)

being H = exp(-T']).

i,(t) int)
—_— -———

® Q)

0 valt)

Fig. 2. Reference frame. -

Transforming equations (9) — (12) into the time domain
gives .

iy () =¥, () * v () - by () 13)
b () =hO)*F O * v (D +i ©} (14)
i, )=y 0%, O~b (O as)
b ) =h(O*{y (O * v, O +i:©)} (16)

where symbol # indicates convolution and x(f) = F" {X(«)} is
the inverse Fourier transform.

These equations suggest that an overhead line can be
mp:esenwdatw:hmminalbyamnlﬁwmimladminame
paralleledbyannﬂﬁterminalmmentsoumc,asshownhﬁg.
3.

® i.®

[ e
v () :Q bkm&; #b‘(tl Y |va(¥

Fig. 3. Overhead line equivalent circuit for time domain
calculations.

The impiementation of this equivalent circuit requires the
synthesis of an clectrical network to represent the multi-
terminal admittance, while the current source vales have to
beupdatedatcvexyﬁmestepduringthcﬁmcdomain
calculation. Both tasks are not straightforward, and many
approaches have been developed to cope with this problem,
as described in the next section.

IIL REVIEW OF LINE MODELS

The techniques developed to solve the equations of a
multiconductor frequency-dependent overhead line can be
classified into two main categories : modal domain
techniques and phase domain techniques. An overview of the
main approaches is presented below.

3.1 Modal domain techniques

Overhead line equations can be solved by introducing a
new reference frame

Ve =T, Vim an

| T Ly (18)
where the subscript “ph” and “m” refer to the original phase
guantities and the new modal quantities. Matrices Tv and T
are chosen such that they diagonalize the products Y(w)Z{c)
and Z(@)Y(«)

T,'ZYT, =A (19)
T'YZT = A S (20)
being A a diagonal matrix. To find Ty or T; is the
eigenvalue/eigenvector problem. :
Overhead line equations in modal quantitics become
dv,
-2 =T,'ZT ) @
ALy 1
) N, Vv, 22
dx 'I;_YTV (m) ( )

Tt can be proved that [Ty]" = [Til', and that the products T+’
1ZT; (= Zw) and T YTv (= Y(o) are diagonal [25].
The solution of a line in the phase domain and modal
quantitics can be then expressed as follows
Litmy @)=Y @)V (0)- By, () (23)
By (@) = Higy @)Y ©)Vaim @ + L@ @9
Iom) (@)= Y.{-) (m)v-(-) (©)-Bapm) (o) (25)
By () = Hiay @)V @)V () + B (@)]  ©26)
The solution in time domain is obtained again by using
convolution

iyt = Yem(t) * Vi) (O — Py t) 27
| ) =h,(t) ¥em® *Vam) V) +ig (D} (28)
inm{® = Yom ©)* Vomt)— | (t). (29)
by () =ha B *{Y e(my (™* Yi(m) () +igey (13 (30

However, since both Ty and Ty are frequency-dependent, a
new convolution is now needed to obtain line variables in
phase quantities

¥ (ph) B =t,(O)* vV @31
i(ﬂ) ®H=t,0* i(n) t) (32)

The procedure to solve the equations of a multi-conductor
frequency-dependent overhead line in the tme domain
involves in cach time step the following :

1) Transformation from phase domain terminal voltages to
modal domain.

2) Solution of the line equations using modal quantities, and
calculation of (past history) current sources.

3) Transformation of current sources to phase domain

quantities. .

Fig. 4 shows a schematic diagram of the solution of
overhead line equations in the modal domain.

linear — Linear —
Lions ; Trapdformations|
L T' rTI T' |TI i ol
g e sonu. s — b
Fig. 4. Transformations between phase domain and modal
domain quantities.
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depend on the capacitances, which can be assumed
frequency independent. Taking into account this
behaviour, frequency-dependent effects can be separated,
and a line section can be represented as shown in Fig. 5
[21], [24]. . '

Corrections for Correclions for
ides] line —a
losses and logses and
s |interned Mux , |lextermal fux) i inernel fluz | .
. . . .
7,.@V/2 Loer € z, (/2

Fig. 5. Section of a non-homogencous model.

The fact that Zie, is modelled as lumped has advantages,
i.¢. their elements can be synthesized in phase quantities,
and limitations, since a line has tobe divided into sections
to reproduce the distributed nature of parameters. For more
details see the main body and the discussion of [24].
The phase domain approach seems to be the most efficient
one; some models based on these procedures have already
been implemented in some clectromagnetic transients
programs [16], [22], {23]. -

IV. SUMMARY OF LINE MODELS

Fig.Gshowsaschenwoflinemodelsconsideringthe
approaches above discussed.

V. EXAMPLES

Simulation results from the JMARTI line model, as
implemented in ATP-EMTP [7), and the Universal Line
model (ULM), as implemented in EMTDC V3 [22], [23], are

 The constant transformation matrix used by
JMAR'I'IisinallexamplesenlculatedatsooO}hm
resultsarevalidatedincxampleB)againstaphaw-domain
Fourier solution,

A) Single circuit
Figum?andSshowrwpec&velytheoonductor
configuration and the test case scheme of a 50 km, shiclded

untransposed overhead line. Figure 9 compares the receiving
end voltages derived from the JMARTI and the ULM

models. The calculated voltages are seen to be in close
agreement.
sm

L J -
8.5m
o O O
7.5m
15m  Phasc cond: d=3.20m , R=0.05Q%km

Ground wires.; d=1cm , R=0.5Q/km ’

i

Fig. 7. Single circuit line. .

1pu, 50Hz 50 kam

Fig. 8. Single-phase encrgization.

— JMart
sk === LLM
—— 1'-
=
K-
2 o5}
-
o_-
-5 L{

o 1 2 L - 5
Time [ms]

Fig. 9. Receiving end voltages.

B) Paralle! overhead lines

Anewoverheadlincisplacedinpmllelwiththeprevious
one; the goal is now to calculate the inducing effect from one
line to the other. Figure 10 shows the configuration of the
new test system.

Two different situations will be considered to compare the
performance of these two models. Both situations correspond
to fault conditions of the energized line, as presented in the
following paragraphs.

line models

Multcenductor
frequency-dependent

/\

Mods] domain

Phase domain
models

Conxiant
transformation
matrices

Prequency~dependent
transformation
matrices

HNumerical 3=d i 2-d ] Non—-h
convolulion

models

Fig. 6. Classification of multiconductor frequency-dependent line models.
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65m” ™ e Phase cond: d=32cm , R=0.05¢/km
' ires.: d= .
o o o Ground wires.: d=lem , R=0.5{/km
7.6m s
O O O
15m ———y 3.6m
- 50
_ m . 12m
Line #1 Line #2

Ry i

Fig. 10. Parallel overhead lines
B.1. Single-phase short-circuit

Figures 12 and 13 show the receiving voltages on conductor
6 (Line #2) resulting from the energization of Line #1 with a
single phase short circuit at the receiving end, see Fig. 11.
The overvoltages are depicted for time spans of 5 ms and 50
ms., respectively. It can be seen that the relative deviation is
mwsigniﬁcanﬂylargcrthaninthepreviousmsc.mULM
shows a close agreement with the Fourier solution, what
validates the accuracy of this model.

1pu., SOHz © mokm .

Ve

]
Fig. 11. Single-phase short-circuit.

— O%F

“Time [ma]

Fig. 12. Voltages on conductor 6 — Time span =5 ms.

0 10 20 a0 40 50
“Cime [mMs)

Fig. 13. Voltages on conductor 6 — Time span = 50 ms.

B.2. Three-phase short-circuit

Figures 15 and 16 show the recciving voltages on conductor
6 resulting from energization of Line #1 with a three-phase
chort circuit at the receiving end, see Fig. 14. The
overvoltages are depicted again for time spans of 5 ms and
50 ms, respectively. The ULM line model shows again a
close agrecment with the Fourier solution, while the result by

* the JMARTI line is seen to have a 50Hz error. The telative

deviation is now quite large for the initial transient.”

1pu, S0 Hz

50 km

Ve

w

Fig. 14. Three-phase short-circuit. -

-0.0 -
56 1 2 3 4 B

Tkne [me]

Fig. 15. Voltages on conductor 6 — Time span = 5 ms.

0.186

0.1

Voltage ]

[} 10 20 30 40 50
“Tirve [ma]

Fig. 16. Voltages on conductor 6 — Time span = 50 ms.

The calculated results have shown that the new ULM of
EMTDC gives transient respomses which are in good
agreement with the IMARTI line of ATP for a single circuit
test; the deviation between the responses is quite small, less
than 0.03 p.u. However, the relative error becomes quite
apparent in Figures 12, 15 and 16, which correspond to
results from a parallel line configuration. Since the ULM
results are in close agreement with those of -4 Fourier
solution, this suggests that the deviation is being caused by
inaccuracies in the JIMARTI line model. In particular, the
assumption in JIMARTI of the constant transformation matrix
can be of importance.
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VL CONCLUSIONS

An important effort has been made during the last 30 years
to solve the equations of multiconductor overhead lines
accurately represented taking into account the frequency
dependence of their parameters. This paper has i
the main works related to this topic, with emphasis on those
approaches which have been implemented into an EMTP-like
tool. The paper has shown that, although some refinements are
still needed, the solutions developed during the last years have
greatly improved the performance of line models and soived
problems which have been pending for many years.

VIIL. REFERENCES

(1] L.M. Wedepohl, “Application of matrix methods to the

solution of travelling-wave phenomena in polyphase
» Proc JEE, vol. 110, no. 12, pp. 2200-2212,
December 1963. -

[21 W. Scott Meyer and HW. Dommel, “Numerical

modeling of frequency dependent transmission-line
in an electromagnetic transients program,”
JEEE Trans. on PAS, vol. 93, no. 5, pp. 1401-1409,

: /October 1974.

31 A Semiyen and A. Dabuleanu, “Fast and accurate
gwitching transient calculations on transmission lines
with ground return using recursive convolutions,”
IEEE Trans. on PAS, vol. 94, no. 2, pp. 561-571,
March/April 1975.

[4] A. Semlyen, “Contributions to the theory of calculation
of electromagnetic transients on transmission lines
with frequency dependent parameters,” JEEE Trans. on
PAS, vol, 100, no. 2, pp. 848-856, February 1981.

[5] A. Ametani, “A highly efficient method for calculating
transmission line transients,” JEEE Trans. on PAS, vol.
95, no. 5, pp. 1545-1551, September/October 1976.

[6] J.F.Hauer, “State-space modeling of transmission line
dynamics via nonlinear optimization,” IEEE Trans. on
PAS, vol. 100, no. 12, pp. 4918-4924, December 1981.

(1 TR Marti, “Accurate modeling of frequency-
dependent transmission lines in electromagnetic
transient simulations,” JEEE Trans. on PAS, vol. 101,
no. 1, pp. 147-155, January 1982, ¢

[8] M.C. Tavares, J. Pissolato and CM. Portela, “Mode
domain multiphase transmission line model - Use in
transients analysis,” JEEE Trans. on Power Delivery,
vol. 14, no. 4, pp. 1533-1544, October 1999.

9] L. Marti, “Simulation of transients in underground
cables with frequency-dependent modal transfor-
mation matrices,” JEEE Trans. on Power Delivery, vol.
3, no. 3, pp. 1099-1110, July 1988,

{10] LM. Wedepohi, H.V. Nguyen and GD. Irwin
“Frequency-dependent transformation matrices for
untransposed  transmission lines using Newton-
Raphson method,” JEEE Trans. on Power Systems, vol.

11, no. 3, pp. 1538-1546, August 1996.

[11] B. Gustavsen and A Semlyen, “Simulation of
transmission line transients using vector fitting and
modal decomposition,” IEEE Trans. on Fower
Delivery, vol. 13, no. 2, pp. 605-614, April 1998.

[12]

[13]

" 14]

[15]

[16]

117

118

[19]

120]

21}

[22]

[23]

[24]

[25]

H. Nakanishi and A. Ametani, “Transient calculation
of a transmission line using superposition law,” JEE
Prac, vol. 133, Pt. C, no. 5, pp- 263-269, July 1986.

R Mahmutcehajic et al, “Digital simulation of -'

electromagnetic wave propagation ina multicon-ductor
transmission system using the superposition principle
and Harfley transform” IEEE Trans. on Power
Delivery, vol. 8, no. 3, pp. 1377-1385, July 1993. -

B. Gustavsen, J. Sletbak and T. Henriksen,
“Calculation of clectromagnetic transients in
transmission cables and lines taking frequency
dependent effects accurately into account” JEEE
Trans. on Power Delivery, vol. 10, no. 2, Ppp.
1076-1084, April 1995.

G. Angelidis and A. Semlyen, “Direct phase-domain
calculation of transmission line transients using
two-sided recursions,” JEEE Trans. on Power
Delivery, vol. 10, no. 2, pp. 941-949, April 1995.

T. Noda, N. Nagaoka and A. Ametani, “Phase domain
modeling of frequency-dependent transmission lines by
means of an ARMA model,” JEEE Trans. on Power
Delivery, vol. 11, no. 1, pp. 401-411, January 1996.
T.Noda,N.NagaoknandA.Ametnni,“Funher
i tstoaphase-domainARMAlincmodclin
terms of convolution, steady-state initialization, and
stability,” JEEE Trans. on Power Delivery, vol. 12, no.
3, 1327-1334, July 1997.

H.V. Nguyen, HW. Dommel and JR. Marti, “Direct
phase-domain modeling of frequency-dependent
overhead transmission lines,” JEEE Trans. on Power
Delivery, vol. 12, no. 3, 1335-1342, July 1997.

B. Gustavsen and A. Semlyen, “Combined phase and
modal domain calculation of transmission line
transicnts based on vector fitting,” JEEE Trams. on
Power Delivery, vol. 13, no. 2, pp. 596-604, April
1998.

B. Gustavsen and A. Semlyen, “Calculation of
transmission  line  tramsients using  polar
decomposition”, JEEE Trans. on Power Delivery, vol.
13, no. 3, pp. 855-862, July 1998.

F. Castellanos, J.R. Marti and F. Marcano, “Phasec-
domain multiphase transmission line models,”
Electrical Power and Energy Systems, vol. 19, no. 4,
pp. 241-248, May 1997,

A. Morched, B. Gustavsen and M. Tartibi, “A
universal model for accurate calculation of
clectromagnetic transients on overhead lines and
underground cables,” IEEE Trans. on Power Delivery,
vol. 14, no. 3, pp. 1032-1038, July 1999.

B. Gustavsen et al., “Transmission line models for the
simuiation of interaction phenomena between parallel
AC and DC overhead lines,” Proc of IPST, pp. 61-67,
June 20-24, 1999.

F. Castellanos and JR. Marti, “Full frequency-
dependent phase-domain transmission line model,”
IEEE Trans. on Power Systems, vol. 12, no. 3, pp.
1331-1339, August 1997. '

H.W. Dommel, EMTP Reference Manual (EMTP
Theory Book), BPA, 1986.

IPST"200] International Conference on Power Systems Transicats — June 24 - 28, 2001 — Rio de Janciro, Brazil 4]



