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Abstract – An analysis of Pollaczek’s integral is 
presented in this paper. It reveals the difficulties found  
when attempting its numerical solution. The analysis 
provided here further indicates a strategy to avoid 
these difficulties. A numerical algorithm is then 
described and implemented. Solutions to Pollaczek’s 
integral are provided in graphical form for a broad 
range of applications. Finally, the graphical results are 
used to establish validity ranges of two well known 
approximations of Pollaczek’s integral. 
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I. INTRODUCTION 
The existing methods to perform electromagnetic 

analysis of aerial lines can be considered well established. 
For underground transmission systems, however, the 
currently available methods still require further 
development. This is due in part to the large variety of 
cable geometries being used. Another difficulty is the 
analysis of electromagnetic fields inside an imperfect 
conducting ground. To calculate buried cable ground 
impedances one has to solve Pollaczek�s integral [1] 
which, as the one by Carson, does not have an analytical 
solution [2]. Carson�s integral, however, can be solved 
numerically with relative ease and counts in addition with 
satisfactory approximations [3,4]. 

Pollaczek�s integrand is highly oscillatory and 
irregular. For this reason its integration by series or by 
general algorithms presents convergence problems [2,5,7]. 
Wedepohl and Wilcox have proposed a series solution to 
Pollaczek�s integral [5]. This series is very cumbersome 
and has convergence difficulties at certain application 
ranges [2,5]. 

In this paper an analysis of Pollaczek�s integrand is 
first presented. On the basis of this analysis, a numerical 
integration algorithm is then developed. The resulting 
algorithm is very reliable and highly efficient from the 
computational stand point. Solutions to Pollaczek�s 
integral are further provided in graphical form for most 
cases of practical interest. Finally, these solutions are 
applied in the evaluation of two very common 
approximations provided in [2] and [6]. 
 

II. POLLACZEK’S INTEGRAL 

Fig. 1 shows a system of two underground cables. Its 
self and mutual ground impedances are calculated through  
the following formulas [1,2]: 
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where:  
ω   angular frequency, 
µ0   magnetic permeability of air and soil, 
σ   soil conductivity, 

K0 ( )   modified Bessel function of second 
class and zero order, 

d   distance between cables (for the self 
impedance this is the cable radius), 

D   distance between one cable and the 
image of the other (for the self 
impedance this is two times the cable 
depth), 

p   complex depth of the Skin Effect layer 
σωµ= 0j1p , 

h   depth of cable (for the mutual 
impedance this is the average depth 

( ) 2hhh 21 += ) 
and 
x   horizontal distance between cables (for 

self impedance this is the cable radius). 
 

Expression (1b) corresponds to Pollaczek�s integral as 
obtained when the ground has magnetic permeability equal 
to µ0. This assumption which, for the sake of clarity, has 
been adopted here can be removed through the 
considerations provided in this paper�s appendix. 

Integral (1b) is transformed into a more convenient 
form as follows. The following change of variable is 
introduced first: 

uα=β           (2a) 
where  

ωµσ==α p1     (2b) 
 

With this change and after some mathematical 
manipulations (1b) becomes: 
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Fig 1.- Underground transmission system. 

 
Consider next the following identity: 
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On introducing (4) in (3) the following expression is 
obtained: 
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This expression has been obtained previously in [7]. It 
should be noted in (5) that h and x are always multiplied 
by √α. According to (2b), these products can be interpreted 
as normalizations of h and x with respect to the thickness 
of the Skin Effect layer. The following dimensionless 
parameters are thus introduced in place of h and x: 

 
α=ξ h2  and h2x=η .  (6a,b) 

 
Expression (5) becomes: 
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The square root of “u2+ j” is solved now as follows: 
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with 

( ) 21uuu F 42 ++=          (8b) 
and 

( ) 21uuuG 42 ++−= .             (8c) 
 
Finally, on replacing (8a) in (7) one obtains: 
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This last expression provides a convenient basis for the 
numerical algorithm presented in this paper. 
 

III. ANALYSIS OF POLLACZEK’S INTEGRAND 

The integrand in (9) contains four factors. F(u) and 
G(u) defined by (8b) and (8c), respectively, are analyzed 
first since these functions determine three of these factors. 

Fig. 2a shows a plot of F(u), along with its following 
asymptotic approximation: 

 
F(u) →  u,  for  u > 1.0.  (10) 

 
Fig. 2b shows the plot of G(u) and of its following 
asymptotic approximation:  

 
G(u) → 1/(2 u),  for  u > 1.0.  (11) 

 
Fig. 2c shows the plot of F(u)-u, and its asymptotic 
approximation: 

 
F(u) − u → 1/(8 u3), for  u > 1.0.  (12) 

 
It is clear from (11) and (12) that the first factor in (9) 

is a complex function independent from the physical 
parameters of the cable system. Its real and imaginary parts 
�F(u)−u� and �G(u)�, respectively, are decreasing 
monotonic. This first factor can thus be regarded as a fixed 
damping envelope. 

As opposed to the first factor, the other three depend on 
the cable system physical properties. According to (10), 
the second factor in (9) has the following asymptotic 
approximation as u>1: 

 
exp [-ξ F(u)] → exp(-ξ u)  for  u > 1.0.         (13) 

 
Clearly this second term provides an additional damping 
envelope. Based on this sole factor, a truncation criterion 
for Pollaczek�s integral is suggested as follows. Consider 
the replacement of the following semi-infinite integral by a 
finite one: 
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The relative error of this approximation is: 

εr = exp(−ξ⋅umax).    (14b) 

For a given εr: 
umax =  λ / ξ,     (14c) 

with 
λ =  − loge (εr).     (14d) 
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Fig 2.- Plots of functions of u and of their 
asymptotic approximations. a) y = F(u), b) y = 
G(u) and c) y = F(u)-u. 

 
Expression (14c) is adopted here as the truncation criterion 
for the numerical solution of Pollaczek�s integral. The 
value of λ=6.0 has been established empirically here as 
satisfactory, for as long as umax≥ 2; otherwise, umax=2 and, 
from (14c), λ=2ξ. 

The third factor in (9) is readily identified as a complex 
term with irregular oscillations. On expanding it as 
follows: 
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it becomes clear that this term does not oscillate if: 

2 G(u) π<ξ ;               (15b) 

or, since the maximum value of G(u) is G(0)=√2/2, 
expression (15a) will oscillate for: 

22144222 ./ =π>ξ               (15c) 

Fig. 3 illustrates a plot of ξ⋅G(u) for a value of ξ greater 
than 2.22144. Each value of ξ⋅G(u) which is an odd 
multiple of π⁄2 corresponds to a zero crossing of the cosine 
term in (15a). Even multiples of π⁄2 are the zeros for the 
sine term. The total number of zeros is: 

{ }πξ= 2 infni ,              (15d) 

where "inf {x}" denotes the nearest integer equal or 
smaller to positive x. The values of u corresponding to 
these zeros are easily obtained as follows: 
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Fig. 4a provides a set of plots for cos[ξG(u)] at 

different values of ξ, while Fig. 4b shows the  
corresponding plots for sin[ξG(u)]. The irregular and 
oscillatory behavior of this third factor of (9) is apparent in 
these two figures. 

The fourth factor of (9) is the cosine function of ξηu. 
This thus is an oscillatory regular term. The number of 
zeros of this factor within the truncated interval of u 
�[0,umax]� is: 
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According to (14c) and (16) the fourth factor does not 
present oscillations between 0.0 and umax if 
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         Fig. 3.- Plot of  y = 12⋅G(u). 
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Fig. 4.- a) Plot of  y = cos[-ξG(u)] for various 
values of ξ. b) Plot of  y = sin[ξG(u)] for values of 
ξ. 

 
IV. NUMERICAL SOLUTION OF POLLACZEK’S 

INTEGRAL 

The previous analysis reveals that a major source of 
difficulties when solving numerically Pollaczek�s integral 
is the highly irregular oscillation pattern of its integrand. 
This pattern is caused by the combination of the third and 
the fourth factors of (9) and it makes practically impossible 
to establish rules regarding the number and widths of the 
oscillation lobes. 

The above analysis leads also to the following 
numerical procedure that circumvents the previously 
mentioned difficulties. First, umax is determined from (14c) 
and from an empirically predetermined λ. The numerical 
integration range is thus established as [0,umax]. Then, all 
the values of u that are inside [0,umax] and that correspond 
to a zero of one of the following functions are determined 
and ordered into a vector U=(u1, u2, ..., un): 

cos [ξ G(u)],    (18) 

sin [ξ G(u)]    (19) 
and 

cos [ η ξ u].    (20) 

Note that (18) and (19) are the real and imaginary parts of 
(15a), respectively, and that (20) is the fourth factor in (9). 
The width of the integrand�s first lobe is u1; i. e., the first 
component of U. The width of the last lobe is umax−un. 

Next, the truncated integration range [0,umax] is divided 
into the following n+1 subranges: 

[0,u1],  [u1,u2]  , . . . and       [un,umax] 

Due to the form in which these subranges are established, 
each oscillation lobe of the real and imaginary parts of the 
integrand will encompass only one or two complete 
contiguous subranges. Next, each one of the subranges is 
further divided in N equally spaced values of u. The 
evaluation of the integrand of (9) in the resulting N×(n+1) 
values of u guarantees that each lobe is represented by at 
least N samples. Finally, the application of a simple 
quadrature method (Trapezoidal, Simpson, etc) to all these 
samples yields a numerical solution of Pollaczek�s integral 
which converges uniformly as N→∞. 

Parameters ξ and η depend on the physical variables h, 
ω, σ and x. It is considered here that for most practical 
situations these variables are within the following ranges: 

0.2 ≤ h ≤ 10 [m] 
2π ≤ ω ≤ 2π ×106 [rad/s] 

10-4 ≤ σ ≤ 1 [S/m] 
and 

0.1 ≤ x ≤ 100 [m] 

These ranges are contained well within the following ones 
for ξ and η: 

10-4 ≤ ξ ≤ 20 
10-3 ≤ η ≤ 100 

The previously described algorithm is now applied in 
the solution of Pollaczek�s integral for values of ξ and η 
inside these ranges. Figs. 5a and 5b provide these results in 
graphical form. These figures were generated solving 
Pollaczek�s integral 287 times. The time required for this 
task by a Pentium  II PC at 350 MHz, running in 
MATLAB  V. 5.3.0, was slightly less than 1 second. 
 

V. EVALUATING SIMPLIFIED SOLUTION 
METHODS 

The difficulties posed by Pollaczek�s integral have 
motivated the search for simplified solutions to it. One that 
is widely used in EMTP applications was proposed by 
Ametani [2]. It consists in approximating Pollaczek�s by 
Carson�s integral. Another important approximation has 
been recently proposed in [6]. This is based on Cauchy 
integral theorem and in the complex depth of images 
method [3]. 

The results plotted in Figs. 5a and 5b have been tested 
increasing the discretization level N in up to four orders of 
magnitude. It has been found that the changes are well 
below 0.1 %. These results now are applied in the 
evaluation of the two above mentioned simplified 
solutions. Fig. 6a provides curves of percent magnitude 
errors in Ametani�s method. Fig. 6b provides similar error 
curves for the approximation proposed in [6]. These two 
sets of plots are obtained taking as reference the values 
from Figs. 5a and 5b. 
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Fig. 5.- Numerical solution of (1b) divided by �2j 
for various values of ξ and η. a) ℜ e{J}, b) 
ℑ m{J}. 

 
From a comparative analysis of Figs. 6a and 6b one can 

observe that both simplified methods provide similar 
approximations for most values of ξ and η. For all the 
values of η considered, except η = 100, and for 10-4≤ ξ ≤ 
10-1 both simplified methods present errors below 10 %. 
For η = 100 Ametani�s method performs much better than 
the one in [6]. 

In addition to the two previously considered simplified 
methods, various others that have been proposed in the 
specialized literature could be tested using the method 
proposed here. These authors consider that the latter is a 
complement of the former ones. 
 

VI. CONCLUSIONS 

An analysis of Pollaczek�s integral has been proposed 
here. Through this analysis it has been possible to 
determine the pitfalls found at solving this integral with 
standard numerical algorithms. The analysis has indicated, 
in addition, a strategy to avoid these pitfalls. An algorithm 
based on this strategy has been described and implemented 
in MATLAB . Solutions to Pollaczek�s integral have been 
provided in graphical form for a very broad range of 
applications.  
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Fig. 6.- Percent errors of approximations to 
Pollaczek�s integral. a)Ametani�s approximation. 
b) Saad, Gaba, Giroux formula. 

 
These solutions have been further applied at evaluating and 
determining applications ranges of the two approximates 
solutions of Pollaczek´s integral previously provided by 
other authors. Finally, these authors consider that the 
algorithms derived from the analysis presented here are 
complementary to various other approximations to 
Pollaczek�s integral that are available from the specialized 
literature. 
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IX. APPENDIX.- EFFECTS OF EARTH 

PERMEABILITY 

Let the ground have a relative magnetic permeability µr 
which generally is different from the µr=1 assumed in (1b). 
The first factor of (9) still preserves the form H(u) + jM(u), 
with H(u) and M(u) decreasing monotonic; just that now 

 

juu 2
r ++µ            (A1)  

replaces 

juu 2 ++            (A2) 
in (4). 

 
Figs. A1 and A2 provide plots of H(u) and M(u), 

respectively, for various values of µr. Note from these two 
figures that for µr=1: 

H(u) = F(u) − u            (A3) 
and 

M(u) = G(u).            (A4) 
 

Note also that H(u) and M(u) can still be regarded as �low 
pass� damping envelopes. The extension of section IV 
algorithm to the case µr ≠ 1 should thus be straightforward. 
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 Fig. A1.- Plot of ℜ e{[ -2j (µr⋅u + ju2 + ]-1} . 
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            Fig. A2.- Plot of ℑ m{[ -2j (µr⋅u + ju2 + ]-1} . 
 
 


