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Abstract: This paper describes a detailed s-domain model for
long transmission lines to be used in the modal analysis of ac
networks. Structural information on the system may be obtained
with modal analysis, which nicely complement those obtained by
the traditional time and frequency response analyses. The s-
domain model considers the distributed parameters of the
transmission lines and also their frequency dependency, taking
into account the skin effect and ground return path influence.
Modal analysis results are included.
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I. INTRODUCTION

Networks containing detailed transmission line models
can be analyzed using different approaches such as time
domain simulation [1,2,3] and frequency scan [2,3].

Additional information on the system may be obtained
from modal analysis, which complement those obtained by
the traditional time and frequency response techniques.
This is system structural information, such as series and
parallel resonances and their sensitivities to parameter
changes. Reduced order linear models for the system may
also be obtained with the use of modal analysis.

Modal analysis of ac networks, incorporating the RLC
transients, is traditionally carried out using state space
models [4]. Recent papers [5] have proposed using the
descriptor systems approach to model ac networks, which
automatically deals with state variable redundancies and
leads to more efficient computer implementations. Both
approaches have to use approximations based on ladder
circuits or Padé polynomials when modeling long
transmission lines, which usually cause severe problems.

The modeling of frequency dependent transmission lines
in ac networks for modal analysis is best carried out in the
s-domain. The ac network may be modeled as a nodal
admittance matrix in the s-domain, Y(s), as described in
[6]. Robust and efficient eigensolution algorithms specially
suited to the Y(s) model are developed in [7]. These
algorithms require the determination of the Y(s) derivatives
with respect to s.

This paper describes a detailed transmission line model
that may be used for the modal analysis of ac networks
represented in the s-domain. The frequency dependency of
transmission line parameters is considered, including the
conductor skin effect and the ground return path. Modal
analysis results are presented for the described line model.

II. S-DOMAIN MODEL

The ac network dynamic equations may be assembled as
a nodal admittance matrix in the s-domain, Y(s). Each

diagonal element of this matrix is equal to the sum of the
operational admittances (functions of s) of all the elements
connected to a given node. The off-diagonal elements are
equal to the negative value of the sum of the operational
admittances of the branches connecting the corresponding
nodes. This matrix must be reassembled for each complex
frequency of interest. The following equation is formed for
a general ac network [6,7]:

( ) ivY =⋅s (1)

where Y(s) is the system nodal admittance matrix in the s-
domain, v the vector of bus voltages and i the vector of
injected currents.

Equation (1) may be particularized for single-input-
single-output systems, as presented in (2), where the input
variable ik is the injected current in bus k while the output
variable vj is the voltage at bus j . Vector b is comprised of
zero elements except for the k-th element that has a unity
value. The row vector c is also comprised of zeros except
for the j-th element, which is equal to unity:
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One should note that the number of system states is, in
general, considerably larger than the dimension of matrix
Y(s). This is due to the fact that every system element
connected to a node of Y(s) is a second or higher order
operational admittance (RLC branches) or analytical
functions in s which describe the dynamics of the
transmission lines.

As an example, a RLC branch has the following
operational admittance:
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Assuming this RLC branch connects nodes i and j, the
above elements must be added to the diagonals (i,i) and
(j,j) of Y(s). The same elements must be added, with
negative signs, to the off-diagonal elements (i,j) and (j,i).

The eigensolution methods proposed in [7] require the
calculation of the derivative of Y(s) with respect to s. The
derivative of Y(s) is built following the same logic used to
assemble Y(s), with the difference that the derivatives of
the operational admittances of the branches are now used.

The derivative of the RLC branch admittance is:

2

2

1

1








⋅
+⋅+

+−
=

Cs
LsR

Cs
L

ds

dy
(4)



III. MODAL ANALYSIS FOR S-DOMAIN MODELS

Manipulation of the two equations in (2) yields the
relationship between the system input (vj) and output (ik)
variables, also known as the transfer function G(s):
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Substituting s for j ω , one obtains the network harmonic
impedance G(j ω), which is used to calculate the frequency
scan of the system. These methods based on the building of
Y(j ω), for a set of discrete values of  ω are widely used in
harmonic analysis programs. The s-domain modeling is
more general because it uses the complex variable s,
instead of the purely imaginary j ω. The s-domain approach
allows the modal analysis of the system [7].

The time response of y to an impulse disturbance applied
in u is equal to the inverse Laplace transform of G(s),
considering zero initial conditions in all system states. This
time response will be of the form:
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where λi are the poles of G(s) and Ri their associated
residues. The poles of G(s) are those values of s that
produce singularity in G(s). Every pole of G(s) causes the
matrix Y(s) to become singular (det[Y(s)] = 0), and
therefore not inversible. Any chosen transfer function has
the same set of poles, since they are completely defined by
the matrix Y(s).

The s-domain algorithm for the calculation of the
dominant poles of a transfer function is given below [7]:
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After choosing an estimate λ(0) for the pole, one should
build the matrix Y(λ(0)) and its derivative with respect to s
and solve the linear systems (7) and (8), obtaining the
vectors v and w and scalar u for the first iteration. The
correction ∆λ may then be calculated using (9) as a
function of u, v, w and the derivative of the matrix Y(s).
The updated value of λ  is given by:

( ) ( ) )(1 kkk λ∆+λ=λ + (10)
This procedure is iterated until the modulus of the

increment ∆λ becomes smaller than a specified tolerance.
The approximation for the transfer function residue at the
(k + 1) iteration, associated with the pole λ is given by [7]:
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Once the pole is converged, the expression (11) provides
an accurate value for the residue.

IV. DISTRIBUTED PARAMETER TRANSMISSION
LINE MODELING

The single-phase or single-mode model of a transmission
line has the following admittances [8]:

( )lyy cs ⋅γ⋅= coth (12)

( )lyy cm ⋅γ⋅= csch (13)

where ys is the admittance to be added to the diagonals
of Y(s) while ym is the admittance to be added to the
off-diagonal terms, with negative sign. The line
admittances are functions of its length l, the propagation

constant γ and the characteristic admittance yc. The

constants γ and yc shown in (14) are functions of the line
parameters per unit length: longitudinal impedance per unit
length, Zu , and transversal admittance per unit length, Yu ,
which depend on s.
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The derivatives of the line admittances with respect to s
are given by:
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Some of the advantages of using the s-domain
representation include the fact that there is no need to
define the network state variables or to derive the dynamic
equations for the various system elements as a function of
the states. Note also that, in the case of the distributed-
parameter transmission line there is an infinite number of
states, due to the inherent characteristics of the hyperbolic
functions in the line model. Approximate, finite-order, state
space or descriptor system models exist for the distributed-
parameter transmission line, using ladder networks or
polynomial approximations of the Padé type [9]. However,
as one attempts to improve the model’s accuracy by
increasing the model order, there appears numerical
problems, extremely large system models and extraneous
results, as demonstrated in [10]. The s-domain model, on
the other hand, does not present any of these three
disadvantages.

V.  TRANSMISSION LINE PARAMETERS

The line parameters per unit length of longitudinal
impedance Zu and transversal admittance Yu are obtained
from the reduction of the matrices Zu and Yu containing the
parameters of the various individual line conductors [11].

The quasi-stationary approximation, which assumes the
capacitance matrix C to be independent of s, is quite
adequate to the present application. The admittance matrix
may then be expressed by:



CYu ⋅= s (19)

The derivative of matrix Yu with respect to s is,
therefore, equal to the capacitance matrix C.

The longitudinal impedance matrix comprises the sum of
three terms:

( ) ( ) ( )gie
u ZZZZ ++= (20)

The term Z(e) corresponds to the external impedance,
assuming ideal conductors and no ground losses. The term
Z(i) describes the internal conductor impedances, and Z(g)

contains the corrections needed due to the non-ideal
ground return path.

The matrix Z(e) is given by the product of s and the
external inductance matrix (L(e)) which does not depend on
s (the quasi-stationary approximation):

( ) ( )ee LZ ⋅= s (21)
The derivative of the term Z(e) with respect to s is,

therefore, equal to the external inductance matrix.

The external inductance will be proportional to the
inverse of the capacitance matrix, as a result of the quasi-
stationary approximation:
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where µ0 and ε0 are respectively the magnetic
permeability and electric permittivity of the air.

The term associated with the conductor internal
impedances is a diagonal matrix and a function of s. The
conductor internal impedances may be modeled in two
forms, either utilizing Bessel functions [12] or the complex
depth concept [13].

Both formulations consider the conductors to be
represented by a annular cross-section of external radius re

and internal radius ri , which defines the dimensions of the
aluminum external part and the steel core of the ACSR
conductors. It is here assumed, as in most other
applications, that the current does not flow through the
steel core. This turns simpler the mathematical formulation,
which is described below. The internal impedance of the
conductor is given by [12]:
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I 0, I 1 are the modified Bessel functions of first kind
while K 0 and K 1 are the modified Bessel functions of
second kind. Indexes 0 and 1 represent the order of the
functions. The parameter σ is the conductor conductivity
and µ is the conductor magnetic permeability.

The derivative with respect to s of the internal
impedance is given by:
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The derivatives of the modified Bessel functions are
given by:
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where the indexes 0, 1 and 2 represent the order of first
kind (I) or second kind (K) modified Bessel functions.

The internal impedance can alternatively be modeled
using the complex depth p [13]:
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The internal impedance is given by [13]:

∞+= zzzi 0 (26)

where z0 is the conductor impedance at zero frequency
and z∞ the conductor impedance as the frequency
approaches infinity. The impedance z0 is the dc resistance,
being given by:
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The approximation z∞ for the impedance at high
frequencies is given as a function of the complex depth p :
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The derivative of the internal impedance with respect to
s is given by:



i

i

zs

z

ds

dz

2

2
∞= (29)

The matrix Z(g) containing the correction due to the finite
conductivity of the ground return path can be obtained
from the Carson formulas [14]. The Carson integrals can be
solved by series. This approach would yield large
expressions for the derivatives with respect to s. A simpler
model that leads to good results and is used in this paper
utilizes the concept of the complex depth for the ground
return [15]. The ground return path correction terms
obtained by this method can be added to the external
impedance, as shown below:
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where p is the complex depth given in (25) with σ equal
to the earth conductivity. The earth electric permittivity ε
can also be included using (32).
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The derivatives of these impedances with respect to s are
given by:
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−=  , when neglecting ε in (32).

The equivalent homopolar and non-homopolar
parameters Zu and Yu can be obtained from reductions in
the line parameter matrices, as described in [11]. The
matrix derivatives with respect to s are obtained utilizing
the derivative rules to the expressions produced during this
matrix reduction.

In case the homopolar and non-homopolar modes are
considered modes or quasi-modes, there exist several
formulas, which allow the approximate computation of
these parameters [8,11]. These formulas allow a deeper
understanding of how the line parameters change with the
geometrical configuration, require less data and lead to an
easier computational implementation. The homopolar and
non-homopolar capacitances C can be approximately
computed from these formulas and the admittances Yu are
given by the product of s and the capacitances:

11 CsYu ⋅= (35)

00 CsYu ⋅= (36)

where indices 0 and 1 represent homopolar and non-
homopolar quantities respectively.

The homopolar and non-homopolar longitudinal
impedances are given by the sum of the three terms below
(external, internal and ground correction impedances):
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The external impedance is given by the product of s and
the external inductance L(e) , which does not depend on s:
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The approximated formulas for the homopolar and non-
homopolar external inductances can be obtained from the
capacitances, based on property (22):
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The internal impedance term is equal for the homopolar
and non-homopolar components, and is obtained by direct
division of the conductor impedance in (23) by the number
of subconductors in the bundle.
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where ns is the number of subconductors in the bundle.
The derivative of the internal impedance may be similarly
obtained:
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The correction for the effects of the ground return path
can be considered together with the external inductance
utilizing approximate formulas based on the geometrical
mean distances [8,11] considering the complex plane of the
return path [15]. This is similar to the method utilized in
the assembling of the impedance matrices in (30) and (31).

The lack of specific geometric information and in cases
where it is acceptable an additional small error, the
following approximate formulas can be used. They are
valid for medium-range frequencies (up to a few kHz) for
usual values of ground conductivity. These formulas, when
separately considered from the external inductance, are:
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where nf is the number of phases in the line, H is twice
the value of the geometric mean height of the  conductors
and H' the geometric mean distance between the
conductors and their mirror images reflected in the  ground
plane. The distances H and H' may be utilized as adjustable
parameters in the model. These parameters are adjusted
such that the line behavior may be better represented as a
function of frequency.



VI. RESULTS

Example results will be shown considering a 300 km
long, 500 kV transmission line, with the following non-
homopolar parameters (positive sequence) at 60 Hz:

mH/km862.0  /km028.0 ⋅+Ω= sZu F/km0138.0 µ⋅= sYu

A line energization study was carried out, applying a
sinusoidal voltage disturbance at the sending end (input
variable of G(s)) and monitoring the voltage at the
receiving end (output variable of G(s)), which is kept open.

The frequency response plot of G(s), shown in Fig. 1,
was obtained when neglecting the frequency dependency in
the line parameters. Fig. 2, on the other hand, shows the
same transfer function plot when the line internal
impedance is modeled by Bessel functions. The internal
impedance were obtained for a line model having 3
subcondutors per bundle, with 14.8 mm of external radius
and 3.70 mm of internal radius.

It is clearly seen that the frequency dependency of the
internal impedance caused a significant increase in the
damping of the higher frequency poles. Table 1 shows the
poles, computed by the dominant pole algorithm, for the
two cases (considering or not the frequency dependency of
the internal line impedance).

Table 1 - Comparison of Line Poles for Two Models

Poles (rad/s)

(without frequency
dependency)

Freq.

(Hz)

Poles (rad/s)

(with frequency
dependency)

Freq.

(Hz)

−16.241 + j  1518.0  242 −18.758 + j 1506.0  240

−16.241 + j  4554.3  725 −29.508 + j 4528.7  721

−16.241 + j  7590.6 1208 −37.306 + j 7557.5 1203

−16.241 + j 10626.8 1691 −43.346 + j 10587.6 1685

The transfer function residues associated with the line
poles were also obtained and are listed in Table 2.

Table 2 - Residues of G(s) for Various Poles

Poles (rad/s) Freq. (Hz) Residue (pu)

−18.758 + j 1506.0  240 +3.145 − j 959.96

−29.508 + j 4528.7  721 −2.980 + j 963.62

−37.306 + j 7557.5 1203 +2.117 − j 964.37

−43.346 + j 10587.6 1685 −1.771 + j 964.66

The frequency response of the reduced model
incorporating the first four pairs of complex-conjugate
poles is an excellent approximation of the exact G(jω) for
frequencies up to 2,000 Hz (visually coincident with
Fig. 2). The frequency response of the reduced model,
incorporating only the first three pairs of complex-
conjugate poles (see Fig. 3) is an excellent approximation
of G(jω) for frequencies up to 1,300 Hz.

The line was energized by a 60 Hz sinusoidal signal
applied to the line sending end, the Laplace transform for
this signal is given by (47), where ωs is the nominal angular
frequency.
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The residues of the poles for this sinusoidal disturbance
may  then  be  obtained  by multiplying  the  residues of the
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Fig. 1 - Frequency response of G(s) when neglecting the
frequency dependency in the line parameters.
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Fig. 2 - Frequency response of G(s) when considering frequency
dependency in the internal impedances.
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Fig. 3 - Approximate frequency response of G(s) for a 6th order
model of the transmission line.

transmission line transfer function (Table 2) by the Laplace
transform of the sine function in (47), as shown in (48).
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Table 3 shows the numerical values for the residues of
the line transfer function G(s) already multiplied by the
sinusoidal disturbance.

Table 3 - Residues of G(s) multiplied by the sinusoidal input

Pole (rad/s) Freq. (Hz) Residue iR  (pu)

−18.758 + j  1506.0  240 +0.00396 + j 0.17015

−29.508 + j  4528.7  721 −0.00018 − j 0.01783

−37.306 + j  7557.5 1203 +0.00005 + j 0.00638

−43.346 + j 10587.6 1685 −0.00002 − j 0.00325
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Fig. 4 - Four Individual Modal Responses
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Fig. 5 - Transient response of the system
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Fig 6 - Energizing receiving end voltage response

Each pole and associated residue in Table 3 produces a
damped sinusoid in the time domain. Note that the higher
frequency poles have smaller residues, as expected. Fig. 4
presents the four individual modal responses. The sum of
these four modal responses will produce the transient
response of the system, as presented in Fig. 5.

The system steady-state response is given by a sinusoidal
signal of 60 Hz, whose modulus and phase are determined
by the transfer function G(j ωs) multiplied by the amplitude
of the input. In the results below a 1 pu amplitude for the
sinusoidal input was assumed:

( ) o40.0/0827.100758.00827.1 =−= jjG sω
The steady state overvoltage due to Ferranti effect is,

then, equal to 8.27%.
The complete system response is given by the sum of the

transient and steady-state components, and is shown in
Fig. 6. Note the time scale of Fig. 6 (0.15 s) is different
from that in Figs. 4 and 5 (0.05 s).

One should note that the initial overvoltage transients are
dominated by the pole of 240 Hz and its associated residue.

Modal analysis allows monitoring this residue and other
sensitivities [16], to determine means to reduce transients.

VII. CONCLUSIONS

A detailed transmission lines model was developed for
the modal analysis of ac networks. The frequency
dependency of line parameters was considered, including
skin effect and ground return. The modal analysis results
clearly show the importance of considering these frequency
dependent effects. The s-domain modeling approach was
shown to be more suitable to the modal analysis as
compared to state space or descriptor system approaches.
In these last two approaches, the frequency dependency
and the distributed nature of the line parameters may be
only approximately modeled.
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