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Abstract - This article presents a model to represent double
three-phase transmission lines, including the frequency
dependence of longitudinal parameters in mode domain.
For the typically important frequency range of switching
electromagnetic transients, from 10 Hz to 10 kHz, the
proposed model uses a single real phase-mode
transformation matrix. The model includes the frequency
dependence of line parameters in digital programs, such as
ATP, EMTP, EMTDC and MICROTRAN, using ideal
transformers. This model is applied for three types of line
transposition and non-transposed line, called the Quasi-
Mode transmission line model. It is employed for an actual
double three-phase transmission line in Microtran program.
Some transient simulations are performed, such as
energization and fault analysis.
Keywords: frequency dependence, double three-phase
transmission line, mode domain, real transformation, Microtran.

I - INTRODUCTION

Most digital simulator programs of the
electromagnetic transients work in time domain ([1], [3]).
This choice facilitates the simulation of conditions easily
expressed in time domain, e. g. switching of a circuit
breaker, and, also, of some non-linear elements.
However, one of the great difficulties in studying
electromagnetic transients is the correct representation of
the transmission lines. In general, the transmission lines
can not be expressed directly in time domain, because the
longitudinal parameters of transmission lines depend on
the frequency ([8]). This fact creates one full impedance
matrix for each frequency value. If this representation
uses a modal transformation, the longitudinal parameters
are modeled in mode domain. In this case, the mode
impedance matrices are diagonal and frequency
dependence is more easily introduced.

The proposed model presents a real single
transformation matrix for transmission line
electromagnetic transients analysis. For this, the
transformation matrix uses geometrical properties of the
line and is associated with Clarke transformation. The
geometrical properties are introduced by sum and
difference of pairs of phase currents or transversal phase
voltage, called media-antimedia transformation matrix.
This transformation matrix creates two uncoupled single
three-phase circuits, when it is applied to the double
three-phase transmission line. Afterwards, the Clarke
transformation matrix is applied to produce the mode or
Quasi-mode impedance matrices ([2], [5], [6], [7], [9]).

In this paper, three types of line transposition are
considered. Ideally, a transposition section has a small
value which permits the use of a medium impedance, or

admittance, value for a cycle of transposition. The three
types of transposition line analyzed are : the complete
transposition (ideal case), the rotational transposition
(similar to a six-phase line case), the operational
transposition (similar to some practical cases). Some
applications of this proposed model are presented, using
Microtran program.

II - LINE LONGITUDINAL IMPEDANCE
MATRIX, Z, AND TRANSVERSAL ADMITTANCE

MATRIX, Y, PER UNIT LENGTH

The generic structure of double three-phase
transmission line, with a symmetry vertical plane, is
shown in Figure 1.

Figure 1 – Schematic representation of mutual elements in
matrices Z and Y.

The ground wires are assumed implicit in
matrices referred to phases. The phase longitudinal
impedance matrix, per unit length, has the form below.
Similar basic shape applies, also, to matrix Y.

A D E C G H

D A H G C E

Z = E H B J L M (1)

C G J I N L

G C L N I J

H E M L J B

With the modal transformation, this impedance
matrix is changed into a diagonal matrix (similar
transformation applies to Y). The mode impedance
matrix is:

Zmd = TFM * Z * TFM
-1 (2)

The transformation (TFM) can be considered the
multiplication of two transformation matrices. One is
based on the line geometrical properties, called media-
antimedia transformation. This transformation separates
the circuits of double three-phase line in two uncoupled
“lines”. Each of these two uncoupled “lines” can be
treated in mode domain, with routine procedures
applicable to three-phase lines ([2], [5], [6]). With an
eventual small error, instead of an exact mode
manipulation of each of these two “lines”, Quasi-modes



can be considered. One way of considering the mode
transformation is to consider Clarke transformation. It has
the important advantage of being real and frequency
independent, and, in most cases, introduces quite small
errors, if Quasi-mode are treated as exact modes. Some
details of these transformation are described in sections
III and IV.

III - MEDIA-ANTIMEDIA TRANSFORMATION

The media-antimedia transformation is a linear
transformation where there are no mathematical
approximations. It depends on the vertical symmetrical
plane of the line. The main aim of this transformation is
to uncouple the two circuits of a double three-phase line.
This transformation uses the geometrical properties of the
line and it is obtained from sum and difference of pairs of
phase currents or transversal phase voltage ([1], [2], [5],
[6]). Figure 2 shows the symmetrical axis for double
three-phase lines.

Figure 2 – Symmetrical axis for double three-phase lines.

The media-antimedia transformation matrix is:
1/√2 1/√2 0 0 0 0

0 0 1/√2 0 0 1/√2

Tma = 0 0 0 1/√2 1/√2 0 (3)

1/√2 -1/√2 0 0 0 0

0 0 1/√2 0 0 -1/√2

0 0 0 -1/√2 1/√2 0

The Tma matrix creates a new impedance matrix:
the media-antimedia impedance matrix (Zma).

Zma = Tma * Z * Tma
-1

The media-antimedia is:
Zma = Zm 0 (4)

0 Za

This matrix can be used to separate double three
order matrices, such as the media impedance matrix (Zm)
and the antimedia impedance matrix (Za).

The Zm matrix is:

A + D E + H G + C

Zm = E + H B + M L + J (5)

G + C L + J I + N

The Za matrix is:
A - D E - H G - C

Za = E - H B - M L - J (6)

G - C L - J I - N

These two matrices (and, in a similar way, two
corresponding Y matrices) correspond to two uncoupled
three-phase “lines”, as indicated above. Similar
transformations apply, also, to the transversal impedance

matrix, per unit length.

IV - CLARKE TRANSFORMATION

With the approach mentioned above, Clarke
transformation can be applied to each of the two
uncoupled three-phase “lines”. The Clarke transformation
uses linear combinations among the elements of the
media and antimedia matrices and this transformation
substitutes the exact mode transformation ([2], [5], [6],
[7], [8], [9]).

The Clarke matrix is:
-1/ √6 2/ √6 -1/ √6

TC l = 1/ √2 0 -1/ √2 (7)

1/ √3 1/ √3 1/ √3

Each three-phase line created by the Tma
transformation matrix will be used to obtain a modal
impedance matrix. However, the double three-phase line
is represented by a six-order impedance matrix, and it is
necessary to generate a Clarke Transformation matrix of
order six. This six order transformation matrix (TCl6) is
used to obtain the real transformation matrix (TFM). The
sixth order Clarke matrix is:

TCl6 = TC l 0 (8)

0 TC l

The single real modal transformation is analyzed
in the next section.

V - TRANSFORMATION MATRIX

The multiplication between the media-antimedia
matrix (Tma) and the six order Clarke matrix (TCl6) creates
the transformation matrix (TFM). Similar procedures
apply to matrix Y. The TFM matrix is:

-1/ 2√3 -1/ 2√3 1/ √3 -1/ 2√3 -1/ 2√3 1/ √3

1/ 2 1/ 2 0 -1/ 2 -1/ 2 0

TFM= 1/ √6 1/ √6 1/ √6 1/ √6 1/ √6 1/ √6 (9)

-1/ 2√3 1/ 2√3 1/ √3 1/ 2√3 -1 / 2√3 -1/ √3

1/ 2 -1/ 2 0 1/ 2 -1/ 2 0

1/ √6 -1/ √6 1/ √6 -1/ √6 1/ √6 -1/ √6

This transformation matrix creates two
impedance matrices which are three order matrices,
called the media matrix and antimedia matrix. Each of
these two groups of three order matrices is associated
with a group of three modes. With the approximation
indicated above, instead of exact modes, in each group,
Quasi-modes can be obtained, using Clarke
transformation. In some conditions, namely with some
transposition assumptions, such modes are exact. The
conversion of phase magnitudes in Quasi-modes (or
eventually exact modes), according to transformation
defined above, can be done with ideal transformers, and,
so, can be included in a common transient simulation
programs, working in time domain ([2], [7], [9]).

Figure 3 shows the ideal transformers for
antimedia α mode. The transformation matrix (TFM) can
be modeled in a time-domain program like



MICROTRAN through ideal transformers.

Figure 3 – Transformation for antimedia α mode.

VI - REAL CASE AND LINE TRANSPOSITIONS

A real case, which is used in this article, is a real
double three-phase transmission line. The line voltage
(RMS) is 440 kV and the line length is 160 km. The line
structure is shown in Figure 4.

Figure 4 – Tower structure of the real transmission line.

In the assumption of an ideal transposition of
phases, in the sense that a transposition cycle length is
reasonably shorter than a quarter wave length, in the
dominant frequency range of phenomena to study, the
matrices Z and Y, averaged in a transposition cycle, have,
in general, several additional symmetry properties, which
depend on the type of transposition used in the line. With
such assumption, with some types of transposition, the
use of Clarke transformation, in conjunction with media-
antimedia transformation (including some eventual
variants) leads to exact modes. Such property is related,
in general, to some degeneracy conditions, in which there
are several coincident eigenvalues, and, so, some freedom
in choosing some eigenvectors (any linear combination of
eigenvectors with the same eigenvalue is, also, an
eigenvector with the same eigenvalue). Although the
assumption of ideal transposition is not deductively
justified for a large frequency spectrum, in usual
conditions, the assumption of ideal transposition leads to
reasonably accurate results for most common transient

studies.

A) Complete transposition
For this transposition, each phase of both

circuits occupies all phase positions on the tower. All
diagonal elements of each of matrices Z and Y are equal,
and all non-diagonal elements of each of matrices Z and
Y are equal. The mode media matrix is:

A - D 0 0

Zmαβ0 = 0 A - D 0 (10)

0 0 A +5D

The mode antimedia matrix is:
A - D 0 0

Zaαβ0 = 0 A - D 0 (11)

0 0 A - D

In the mode impedance matrices, there are six
exact modes: five with the same eigen-value and one
different mode. The different mode is the media
homopolar mode (m0).

B) Rotational transposition
The rotational transposition is what should be

the recommended transposition for six-phase
transmission line. Each phase moves to the adjacent
phase position without changes on the relative positions
among the phases. Figure 5 shows coupling impedances
for this case.

Figure 5 – Coupling impedances for rotational transposition.
(average values for one phase)

If the phase impedance value is represented by
A (average value), the mode media matrix will be:

A-Q-S+T 0 0

Zmαβ0 = 0 A+Q-S-T 0 (12)

0 0 A+2Q+2S+T

The mode antimedia matrix is:
A+Q-S-T 0 0

Zaαβ0 = 0 A-Q-S+T 0 (13)

0 0 A-2Q+2S-T

There are two sets of two modes with the same
eigen-value: by one side, the mα mode and the aβ mode,
by other side the mβ mode and the aα.

C) Operational transposition
For this type of line transposition, each three-

phase circuit is ideally transposed, creating, for typical
frequency values, only one coupling impedance within a
circuit and only one coupling impedance among the
circuits. Figure 6 shows these coupling impedances and
the generic structure of this transposition type. The
average phase impedance value is represented by A . The
coupling impedances are represented by R (coupling



impedance within a circuit) and P (coupling circuit
among the circuits).

Figure 6 – Coupling impedances for operational transposition.

The media mode matrix is:
A-R 0 0

Zmαβ0 = 0 A-R 0 (14)

0 0 A+3P+2R

The antimedia mode matrix is:
(3A-8P+5R)/3 0 4(P-R)/3√2

Zaαβ0 = 0 A-R 0 (15)

4(P-R)/3√2 0 (3A-P-2R)/3

Three modes have the same eigen-value (mα,
mβ and aβ) and three modes are individualized. There is
a coupling impedance between the aα Quasi-mode and
the a0 Quasi-mode and these are not exact modes. If the
coupling impedance is not considered, the result will be a
diagonal matrix. When the proposed model is applied to
the operational transposition, it is called the Quasi-mode
transmission line model, because it does not obtain exact
modes.

D) Non-transposed line
For non-transposed line, the coupling

impedances have different values. This case can be
represented by Figure 1. The equations (5) and (6)
represent media and antimedia matrices for this case. If
the Clarke transformation is applied to these matrices, the
new impedance matrices will be non-diagonal ones. By
using a simple representation, the new media matrix is:

mα mαβ mα0

Zmαβ0 = mαβ mβ mβ0 (16)

mα0 mβ0 m0

The new antimedia matrix is:
Aα aαβ aα0

Zaαβ0 = aαβ aβ aβ0 (17)

aα0 aβ0 a0

The new impedance matrices are symmetrical
and non-diagonal matrices. There are coupling
impedances among the Quasi-modes.

For the non-transposed line, the considered
Quasi-modes are not exact modes. However, the error of
treating Quasi-modes as exact modes may be acceptable
in most typical applications ([2], [5], [6]).

VII - SYNTHETIC CIRCUITS

The Quasi-mode model transformed the double
three-phase line into six uncoupled mode circuits (with an
eventual error when Quasi-modes are not exact modes).

This transformation is applied through ideal transformers
in programs such as EMTP, ATP, EMTDC and
MICROTRAN. For this, the six uncoupled mode lines are
represented by synthetic circuits. These synthetic circuits
are modified π-circuits which have the following
structure:
a) RL series circuit, for low frequencies;
b) RL parallel circuits, for frequency dependence of
longitudinal parameters when it added with RL series
circuit;
c) two electrical branches (C/2), for transversal
parameters.

For each mode, the number of RL parallel
circuits depends on the analyzed frequency range. The
number of these circuits depend on the desirable accuracy
too. These elements are obtained, e.g., considering
chosen frequency intervals and, in each one, taking as
basis geometric mean frequency. Figure 7 shows one π-
circuit unit. The maximum line length represented
correctly by this π-circuit depends on important
frequency range for the phenomena to be simulated.

Figure 7 - π-circuit unit.

This model uses the modified π-circuits to
introduce the frequency dependence. For good accuracy
in the next tests, the used number of RL parallel circuits
was 5 parallel circuits for 0 mode and 4 parallel circuits
for the other modes.

VIII - TESTS WITH SIGNAL PROPAGATION

When phase voltages or phase currents are
multiplied by the transformation matrices, then mode
voltages and mode currents are obtained. If phase
magnitudes correspond to a single mode, then only one
mode is non zero. For example:

VA1 - 0,5 Vm α 1

VB1 1 Vm β 0

VC1 = - 0,5 ==> Vm 0  = 0 (18)

VA2 - 0,5 Va α 0

VB2 1 Va β 0

VC2 - 0,5 Va 0 0

Proportional signals can test the transformation
matrix representation through the ideal transformers. If
the propagated signals have the same proportion of the
input signals, the transformation matrix (TFM) is properly
represented through ideal transformers. For this kind of
test, the values of Table I can be used.



Table I - Signal values for the propagation tests.

A1 B1 C1 A2 B2 C2

m α -0.5 1 -0.5 -0.5 1 -0.5

m β 0.5 0 -0.5 0.5 0 -0.5

m 0 0.5 0.5 0.5 0.5 0.5 0.5

a α -0.5 -1 -0.5 0.5 1 0.5

a β 0.5 0 -0.5 -0.5 0 0.5

a 0 0.5 -0.5 0.5 -0.5 0.5 -0.5

For example, Figure 8 shows the media α mode
voltage test. It uses the signal values of the Table I first
line and the reception terminal circuit is open. The line
transposition is the operational transposition. The signals
are rectangular signals.

Figure 8 – Propagation test results for media α mode.
In Figure 8, there is the same proportion

between the final signals and the signals which were
defined by first line of Table I. The used ideal
transformers are a correct representation for the
transformation matrix.

Another test is applied for the study of the
synthetic circuits. If the same initial signal is applied to
the modes, the propagated signals will be equal for modes
which present equal impedance values for a defined
transposition. For example, in Figure 9, it uses the same
phase A1 signal (rectangular with 0.5 pu), for the media α
mode and antimedia β mode. The line transposition is the
operational transposition.

Figure 9 – Study of the synthetic circuits.

In this case, the used synthetic circuits are a
correct representation for the operational transposition of
the presented double three-phase transmission line.

IX - TRANSIENT SIMULATIONS

The first transient simulation is an energization
test. The operational transposition presented in this paper
is applied. The voltage is 440 kV (RMS) and the
frequency is 60 Hz. The line energization starts with the
peak voltage for the phase A. For phase B, the
energization starts 3 ms after the energization of the
phase A. This time difference is applied between the
phase B and phase C. Figure 10 shows the voltages at the
end line terminal. This is an opened terminal and its
voltage is the double of the source voltage values.

Figure 10 – Line energization example.

The other transient simulation is a single phase-
to ground fault. This simulation begins with a steady state
solution and a fault is applied on the phase A of circuit 1,
when this phase reaches the voltage peak. The fault
occurs on the line end. The initial voltage is 440 kV
(RMS) and the frequency is 60 Hz. Figure 11 shows the
test results for circuit 1 of the presented double three-
phase line. The line is represented using both the Quasi-
Mode Model and the frequency dependent model of the
Microtran program (fdData), considering the operational
transposition, in Microtran. Figure 12 shows the fault
effects on the other circuit of the double three-phase
transmission line.

Figure 11 – Fault simulation for the operational
transposition (circuit 1).

The fdData (Microtran) uses the exact
eigenvectors matrix to produce a modal transformation
matrix that is calculated for 10 kHz. The earth resistivity
is 1000 Ω .m. The Quasi-mode model uses a single real
modal transformation matrix that is frequency
independent and the same value of the earth resistivity.
The length line is 160 km.



Figure 12 – Fault effects on circuit 2 for operational
transposition.

X - CONCLUSION

A real double three-phase line is represented
through the Quasi-mode model. This model represents
the longitudinal parameters in mode domain and it uses a
real single transformation matrix. The presented
transformation matrix uses the geometrical properties of
the double three-phase transmission line and it is
associated with the Clarke transformation. This
transformation matrix can be represented by ideal
transformers, namely in the digital programs which work
in time domain.

The frequency dependence in mode domain is
introduced by modified π-circuits, where the frequency
dependence of longitudinal parameters of the line is
represented by RL series circuit added with RL parallel
circuits.

Three different types of line transposition are
analyzed : complete, rotational and operational. For
complete and rotational transpositions, the proposed
model obtains diagonal mode matrices. However, for
operational transposition the antimedia impedance matrix
is not a diagonal matrix, which means these obtained
values can not be called modes. They are called Quasi-
Modes. For this matrix, the mode coupling impedance
between the α mode and the 0 mode is a negligible term.
However, till in this case, at least for most applications,
the Quasi-modes are a reasonable approximation of exact
modes and allow to obtain results with small error
margin. The non-transposed line is also analyzed and it
produces full Quasi-Mode impedance matrices.

Some tests, such as line energization,
propagation tests and fault, show that Quasi-mode model
is appropriated to represent a double three-phase
transmission line. This model can be implemented in
digital programs which work in time domain.

The mathematical development of the presented

model shows that some of the considered assumptions are
“exact”, without restrictions, and other, are either exact in
some idealized assumptions, which can be accepted in
most usual studies, or reasonable approximations, at least
in some conditions.
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