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Abstract – Although much effort has been devoted in 
the last decade to solve the problem of synthesizing the 
frequency dependent transformation matrix in 
unbalanced multiphase cable system, we believe the 
best solution is to completely eliminate the necessity of 
the frequency dependent transformation matrix. This 
paper presents advances in the development of a new 
cable model (zCable) which splits the representation of 
the cable model into two parts: a constant ideal line 
section and a frequency dependent loss section. This 
approach permits the representation of the frequency 
dependent part of the cable parameters directly in 
phase coordinates thus avoiding the need for frequency 
dependent transformation matrices. In this paper, we 
present a number of simulations comparing the zCable 
model with the full frequency dependent cable model in 
the EMTP, the LMARTI (FDQ cable) model. 
 

I. INTRODUCTION 
 
A number of models can be found in the literature 

[1,2,3,4,7] for the electromagnetic transient simulations of 
overhead lines and cables. Most of them use modal 
decomposition theory [5,6] to decouple the physical 
system (phase domain) into mathematically equivalent 
decoupled systems (modal domain) in order to solve a 
multiphase line as if it consisted of a number of separated 
single-phase lines. 

One of the most widely used transmission line models 
is the FD line model proposed by J. Martí [1]. This model 
includes the frequency dependence of the line parameters 
and their distributed nature, and assumes a real and 
constant transformation matrix to decouple the propagation 
modes. The FD line model has been very reliable and 
accurate for most of the overhead line cases, but not for 
underground cables, which transformation matrix depends 
strongly on frequency. The full frequency dependent FDQ 
cable model developed by L. Martí [4] solve the problem 
of a strongly frequency dependent transformation matrix 
by synthesizing this matrix with rational functions in the 
frequency domain. This model gives very good results for 
cable simulations in both low and high frequency 
phenomena but it is computationally expensive. A new 
vector-fitting technique has been recently introduced by 
Gustavsen and Semlyen [7] to increase the computational 
efficiency of the simulations. Despite the very accurate 
results reported with this technique, the procedure still 
cannot guarantee the absolute numerical stability of the 
frequency dependent modal domain functions. 

In order to avoid the need for a frequency dependent 
transformation matrix, Castellanos and Martí proposed the 

zLine model of [10,11,12] for overhead lines. This model 
can be formulated directly in phase coordinates and 
completely avoids the use of modal decomposition 
matrices. 

The basic principles of the zCable model were 
proposed as early as [8,9,10,11,12]. The present paper, 
however, is the result of a number of years of experiences 
and refinements that make the zCable model a valid 
production-model alternative to existing EMTP frequency 
dependent line and cable models. The approach of the 
zCable model is to split the representation of the wave 
propagation phenomena into two parts: a) the ideal line 
section with constant parameters, and b) the loss section 
with frequency dependent parameters. A difference from 
[10,11,12] is that for the cable case the ideal line section in 
the model is not solved directly in the phase domain but in 
the modal domain to account for the different modal 
velocities in cable propagation. Nonetheless, since the 
parameters of the ideal line section are not frequency 
dependent, the transformation matrix used in this part of 
the model is still frequency independent. An improved 
fitting procedure is developed here to more accurately 
synthesize the frequency dependent loss impedance matrix 
[Zloss(ω)] with rational functions in phase coordinates. The 
results presented in this paper show that the zCable model 
gives very accurate results for all components of cable 
transients, including the multiphase sheath voltages which 
are reported in [9] as being particularly difficult to 
reproduce accurately with the sectionalized line concept. 

 
II. DEVELOPMENT OF THE ZCABLE MODEL 

 
The wave propagation equations in the frequency 

domain can be expressed as 
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where [ZY] and [YZ] are full matrices that couple the 
wave propagation of voltage and current in every phase. 
The elements of the frequency dependent series impedance 
matrix [Z] can be described as 

        ))(()()( int ext
ijijijij LLjRZ ++= ωωωω                (2) 

where )(ωijR  includes the resistance of the conductor 

and ground return; )(int ωijL is the internal inductance 

associated with the flux inside the conductor and ground 

return; and ext
ijL is the external inductance due to the flux 

outside the conductor. Therefore, the series impedance 
matrix [Z] can also be expressed as 
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The shunt admittance matrix [Y] can be described as 
                           ][][][ CjGY ω+=                        (4) 
where [G] is the shunt conductance matrix representing 

dielectric losses, and [C] is the shunt capacitance matrix 
that permits the conductor to retain potential across the 
insulation. The elements of [C] are dependent on the 
permittivity of the insulator and the diameter of the 
conductors and insulators. In this paper, the elements of 
[G] and [C] are assumed to be constant. 

The zCable model is based on first subdividing the 
total cable length into a number of shorter segments to 
simulate the distributed nature of the losses. Then each 
segment is modelled as consisting of two sections: an ideal 
line section and a loss section (Fig. 1). 

Fig. 1 Separation of basic effects in zCable model 
 
The ideal line section includes the external magnetic 

and electric fields [Lext] and [C], which parameters depend 
only on the cable geometry and are frequency independent. 
The loss section consists of two subsections. The first 
subsection includes the resistance [R(ω)] and the internal 
inductance [Lint(ω)], which parameters are frequency 
dependent due to skin effect. This subsection can be 
grouped into one lumped series impedance matrix 
[Zloss(ω)]. The other subsection is the constant dielectric 
losses [G]. 

 
III. MODELLING OF THE IDEAL LINE SECTION 

 
Because of the different permittivities of inner and 

outer insulators in underground cables, the propagation 
velocities for each mode of the ideal line section are 
different. This property results in different travelling times 
and time delays for each mode. This complicates the 
formulation when trying to solve for the propagation 
directly in phase coordinates as is done in the case of 
overhead lines [10,11,12]. This difficulty can be overcome 
if the phase variables are decoupled into mode variables. 
Each of the independent equations in the modal domain 
can then be solved as single-phase lines using the modal 
travelling time and modal surge impedances. 

From circuit theory [13], the modal domain end-node 

voltage vectors )]([ mod tv e
k  and )]([ mod tv e

m  can be 
expressed as functions of the characteristic 

impedance ][ mode
cZ , the current into the end-node vectors 
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m h  (Fig. 2). 
The history voltage sources are updated at each time 

step as functions of past voltage and current values, and 
have the form: 

   )]([)](][[)]([ modmodmodmod
i

e
mi

e
m

e
c

e
kh tvtiZte ττ −+−=   (5) 

   )]([)](][[)]([ modmodmodmod
i

e
ki

e
k

e
c

e
m h tvtiZte ττ −+−=   (6) 

Fig. 2 Ideal line section model of multiphase cables in 
modal domain 

 
After solving each equation in the modal domain, the 

modal quantities have to be transformed back to the phase 
quantities in order to combine the ideal line section with 
the rest of the model, which is defined in phase domain to 
combine with the rest of the network. Although a 
transformation matrix is used for solving the equation of 
the ideal line section, its elements are real and constant 
owing to the property of constant inductance and 
capacitance for the ideal line section parameters. 

 
IV. MODELLING OF THE LOSS SECTION 

 
In general, the elements of the series loss impedance 

matrix [Zloss(ω)] are frequency dependent functions and 
should be synthesized with rational function 
approximation for discrete-time EMTP solution. In 
network theory, the stable finite poles of the system 
functions correspond to the natural frequencies of the 
system, which are a property of the network. To guarantee 
the stability of the [Zloss(ω)] matrix in the zCable model, all 
elements of this matrix are approximated using the same 
set of stable poles. These poles can then be factored out of 
the matrix giving a single scalar transfer function with 
stable poles. 

Since for all elements of [Zloss(ω)] the poles must be the 
same, each element of the matrix must be synthesized in 
coordination with each other. A modification of the curve-
fitting procedure originally proposed in [11] is presented 
here to assure the same poles for all elements of [Zloss(ω)] 
and thus guarantee the stability of the model for all 
possible system simulation cases. 

In the synthesized functions, each element of [Zloss(ω)]  
is expressed as a sum of the same number of parallel RL 
blocks having the same basic form sK/(s+P)  (s=jω), as 
follows 
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where subscript “f” indicates “fitted” function 
 
A. Fitting Procedure 

The developed fitting procedure is described in Fig. 3. 
After the procedure, the set of m RL parallel blocks for 

each element of the series loss impedance )]([ ωloss
fZ  

become the complete expressions of (7) and (8), and 
represent a series of RL parallel circuits. In the new 
procedure developed, the evaluation of the current RL 
block is dependent on the influence of the previous blocks. 

Fig. 3 Curve-fitting procedure 
  
This procedure is different from the curve-fitting 
procedure of [11] where each block was calculated to 
match the line data independently of the other blocks. 
 
B. Optimization Procedure 

After obtaining the synthesized function in the previous 
procedure, some apparent errors between the original and 
fitted functions are still found.  An optimization procedure 
based on Gauss-Seidel iteration and the work of [8] is 
applied to minimize these errors. This procedure is similar 
to the previous fitting procedure except that each RL 
parallel block for each element of [Zloss(ω)] is calculated to 
match the analytical cable data subtracted by the influence 
of all other “m-1” blocks at that frequency. After obtaining 

m matching RL blocks for each element of )]([ ωloss
fZ , the 

accuracy of the fitted functions is checked. If the errors are 
within an acceptable specific level, the optimization 
procedure can be ceased and the final fitted functions are 
obtained. Otherwise, more iterations are needed until the 
errors are within the specified limit. The optimization 
procedure used here is also different from that of [11] 
where a least square technique was used. The number of 
iterations used in this procedure is usually dependent on 
the number of RL blocks used. Generally, acceptable errors 

are obtained with ten iterations or less. Fig. 4 shows a 
comparison of fitted curve calculated with eight RL blocks 
and the original curve for [Zloss(ω)]. 

From Fig. 4, we could apparently tell that the fitted 
function matches very closely the original function based 
on the maximum error of 3%. In our experience, the 
average number of blocks used for an accurate synthesis 
and curve-fitting is about one block per decade. 

 

(a) Diagonal element 
 

(b) Off-diagonal element 
Fig. 4 Comparison of original and fitted functions 

 
V. PHASE DOMAIN CABLE SOLUTION 

 
The Solution of each short cable segment is obtained 

by combining the solutions of the ideal line section and 
loss section. In order to better represent the distributed 
nature of the losses, the loss section is divided into two 
halves, and each half is placed at both ends of the ideal line 
section. Then the solution for the complete cable length is 
accomplished by combining the solutions of all segments 
in cascade. 

The work in [14] presents an algorithm that chooses the 
maximum short segment length for desired model 
accuracy. An exact solution is compared with a solution 
based on the zCable model at several frequencies to obtain 
a relationship between the maximum segment length and 
the maximum frequency of interest. The curve in Fig. 5 is 
derived from [14] and corresponds to a maximum error of 
5% and a ground resistivity of 100 Ω-m. 

 
VI. TRANSIENT SIMULATION AND VALIDATION 

 
In this paper, the results of the zCable model are 

compared with those of the JMARTI line model (FD line) 
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[1] and the LMARTI cable model (FDQ cable) [4]. The 
230KV underground cable arrangement and physical data 
of a test cable are shown in Fig. 6 and Table 1 [4]. The 
cables are modelled with the zCable model using 50 
segments of 0.1km each to simulate accurately up to 
20kHz (Fig. 5). 

Fig. 5 Relationship between segment length and frequency 

Fig. 6 Underground cable arrangement for the test case 
 

Table 1 Physical data of 230KV cable for the test case 
Name Value 

Inner radius of core (cm) 0.0 
Outer radius of core (cm) 2.34 
Inner radius of sheath (cm) 3.85 
Outer radius of sheath (cm) 4.13 
Outer insulator radius (cm) 4.84 
Core resistivity (Ω-m) 6100170.0 −×  
Sheath resistivity (Ω-m) 6102100.0 −×  
Inner insulator δtan  0.001 
Outer insulator δtan  0.001 
Inner insulator rε  3.5 

Outer insulator rε  8.0 

All relative permeability rµ  1.0 

Earth resistivity (Ω-m) 100 
 

A. Single-phase line-to-ground fault test 
The system configuration for a single-phase line-to-

ground fault test is shown in Fig. 7. A three-phase 
balanced sinusoidal voltage source with peak magnitude 
1.0 p.u. is connected and switched on at time zero (t = 0), 
energizing the sending end of each core. The receiving end 
of each core is connected to a resistive load of 500 Ω . The 

sending and receiving ends of the sheaths are directly 
connected to ground. A single-phase short circuit fault is 
applied at the receiving end of core 1 through a resistance 
of 0.05 Ω  at time zero. 

The voltages at the receiving end of core2 for the 
zCable, FD line, and FDQ cable models are shown in Fig. 
8. 

The results of Fig. 8(a) show a noticeable difference 
between the result with the FD line model versus the 
results with the FDQ cable and zCable models. The 
accurate behavior of the FD line model within the first 
300µs (Fig. 8(b)) is probably related to the fact that the 
constant transformation matrix used in this model was 
calculated at the high frequency of 1kHz. The results with 
the zCable model present a very good agreement with 
those of the FDQ cable model over the entire simulation 
range. 

Fig. 7 System configuration of single-phase line-to-
ground fault test 

 
 (a) Receiving end voltage 

(b) Initial transient of the receiving end voltage 
Fig. 8 Voltage at the receiving end of core 2 

 
 

B. Open circuit test 
 

The test system for an open circuit test is shown in Fig. 
9. A three-phase balanced sinusoidal voltage source with 
peak magnitude 1.0 p.u. is connected and switched on at 
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time zero (t = 0), energizing the sending end of each core. 
The receiving ends of all cores and sheaths are left open. 
The sending ends of all sheaths are directly connected to 
ground.  The voltages at the receiving end of core1 and 
sheath1 are shown in Fig. 10 and Fig. 11, respectively. 

 

Fig. 9 System configuration of open circuit test 
 
From Figs. 10 and 11, we can observe that the FD line 

model matches closely the other two models at core1, but 
strongly deviates from the other two models at sheath1. 
The zCable model presents a very good agreement with the 
FDQ cable model at all places. 

(a) Receiving end voltage 

(b) Initial transient of the receiving end voltage 
Fig. 10 Voltages at the receiving end of core 1 

 
(a) Receiving end voltage 

 

 (b) Initial transient of the receiving end voltage 
Fig. 11 Voltages at the receiving end of sheath 1 

 
C. Impulse response test 

The system configuration for an impulse response test 
is shown in Fig. 12. A 1.2 x 5.0µs voltage impulse is 
connected to the sending end of core1, and switched on at 
time zero (t = 0). The receiving ends of all cores and 
sheaths are left open. Except for the sending end of core1, 
all other sending ends of all other cores and sheaths are 
directly connected to ground. The voltages at the receiving 
ends of core1 and sheath1 are shown in Fig. 13 and Fig. 
14, respectively. 

From Figs. 13 and 14, we can see that the results of the 
zCable model closely agree with those of the FDQ cable 
model. Like the results of the open circuit test, the results 
of the FD line model match closely those of the FDQ cable 
and zCable models at the receiving end of core1, but 
deviate at the receiving end of sheath1. Since underground 
cables have strongly asymmetrical configurations, we 
believe that the differences with the FD line model are due 
to its use of a real and constant transformation matrix. The 
imaginary part of this matrix is important in strongly 
asymmetrical configurations. 

 
Fig. 12 System configuration of Impulse response test 

 
Fig. 13 Voltage at the receiving end of core 1 
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Fig. 14 Voltage at the receiving end of Sheath 1 
 

VII. CONCLUSION 
 

The zCable model presented in this paper is based on 
the approach of Castellanos and Marti’s work of 
[10,11,12], which divides the representation of the cable 
model into two parts: an ideal line section associated with 
the external magnetic field [Lext] and the electric field [C], 
and a loss section which includes the resistance [R(ω)], the 
internal flux [Lint(ω)], and the dielectric losses [G]. This 
concept has been extended to the case of different 
propagation velocities for different modes due to the cable 
insulation layers. 

A new fitting procedure is also presented here to 
synthesis and fit all elements of the frequency dependent 
loss impedance matrix [Zloss(? )] simultaneously to 
guarantee equal poles for all elements of this matrix and 
avoid the numerical stability issues of traditional frequency 
dependent transformation matrix line and cable models. 

The results of the zCable model show a very good 
agreement with the FDQ cable model and are more 
accurate than the constant transformation matrix FD line 
model. The main advantages of the zCable model over the 
FDQ model are: 1) zCable avoids the difficulties of 
synthesizing the frequency dependent transformation 
matrix, and 2) the fitting procedure of zCable is very 
robust and efficient, and leads to absolutely stable 
synthesis functions. 

 
VIII. REFERENCES 

[1] J. R. Martí, “Accurate Modelling of Frequency-
Dependent Transmission Lines in Electromagnetic 
Transient Simulations”, IEEE Trans. on Power App. 
And Syst., vol.PAS-101, no.1, pp.147-155, Jan. 
1982. 

[2] A. Semlyen, A. Dabuleanu, “Fast and Accurate 
Switching transient Calculations on Transmission 
Lines with Ground Return Using Recursive 
Convolutions”, IEEE trans. On Power App. And 
Syst., vol.PAS-94, no.2, pp.561-571, March/April 
1975. 

[3] A. Ametani, “A High Efficient Method for 
Calculating Transmission Line Transients”, IEEE 
Trans. on Power App. And Syst., vol.PAS-95, 
pp.1545-1549, 1976. 

[4] L. Martí, “Simulation of Transients in Underground 
Cables with Frequency Dependent Modal 
Transformation Matrix”, IEEE Trans. on Power 
Delivery, vol.3, no.3, pp.1099-1110, July 1988. 

[5] L. M. Wedepohl, “Application of Matrix Methods to 

The Solution of Travelling-Wave Phenomena in 
Polyphase Systems”, Proc. IEE, vol.110, no.12, 
pp.2200-2212, Dec. 1963. 

[6] D. E. Hedman, “Propagation on Overhead 
Transmission Lines I – The Theory of Modal 
Analysis”, IEEE Trans. on Power App. And Syst., 
vol.PAS-84, pp.200-205, March 1965. 

[7] B. Gustavsen, A. Semlyen, “Simulation of 
Transmission Line Transients Using Vector Fitting 
and Modal Decomposition”, IEEE Trans. on Power 
Delivery, vol. 13, No. 2, pp.605-614, April 1998. 

[8] Hung, Wei-Gang, A. Semlyen, “Computation of 
Electromagnetic Transients on Three-Phase 
Transmission Lines with Corona and Frequency 
Dependent Parameters”, IEEE Trans. on Power 
Delivery, Vol. PWRD-2, No.3, pp.887-898, July 1987 

[9] A. Ametani, N. Nagaoka, T. Noda, T. Matsuura, “A 
Simple and Efficient Method for Including A 
Frequency-Dependent Effect in A Transmission Line 
Transient Analysis”, IPST’95 , pp.11-16, Lisbon, 
Portugal, 1995 

[10] F. Castellanos, J. Martí, “Phase-Domain Multiphase 
Transmission Line Models”, IPST’95 , pp.17-22, 
Lisbon, Portugal, 1995 

[11] F. Castellanos, J. Martí, “Full Frequency-Dependent 
Phase Domain Transmission Line Modal”, IEEE 
Trans. on Power Systems, vol.12, no.3, pp.1331-
1339, Aug. 1997. 

[12] F. Castellanos, J. Martí, F. Marcano, “Phase-Domain 
Multiphase transmission Line Models”, EPES, 
Vol.19, No.4, pp.241-248, 1997 

[13] H. W. Dommel, EMTP Theory Book, Microtran 
Power System Analysis Corporation, Vancouver, 
B.C., Canada, May 1992. 

[14] Nan Dai, “Preprocessing Tools for Transient 
Simulation Programs at UBC”, Master Thesis, 
Department of Electrical and Computer Engineering, 
The University of British Columbia, March 1999. 

 
BIOGRAPHIES 

Ting-Chung Yu  was born in Ping-Tung, Taiwan in 
1966. He received the degree of B.S. from Feng-Chia 
University, Taiwan, in 1988, the degree of M.S. from 
University of Missouri-Columbia, U.S.A., in 1993. He has 
worked for CHEM industry company for four years. He is 
currently a Ph.D. candidate at the University of British 
Columbia, Vancouver, Canada. 

José R. Martí was born in Lérida, Spain in 1948. He 
received the degree of Electrical Engineer from Central 
University of Venezuela in 1971, the degree of M.E.E.P.E. 
from Rensselaer Polytechnic Institute in 1974 and the 
Ph.D. degree from the University of British Columbia in 
1981. He has made contributions in modelling of 
transmission lines, transformers, and in new solution 
techniques for off-line and real-time transient simulators. 
He is currently a Professor at the University of British 
Columbia, Canada and a registered Professional Engineer 
in the Province of British Columbia. He is IEEE member 
and is currently Chair of the Vancouver Chapter of the 
Power Engineering Society. 


