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Abstract – This paper adopts a combined iterative method 
( CIM ) as a basis of a transient calculation for nonlinear 
circuits.  CIM consists of a modified predictor corrector 
iteration (MPCI) and Newton-Raphson iteration (NRI) 
algorithms, and a parallel connection of a piecewise linear 
conductance and a nonlinear current source for MPCI and 
a parallel connection of a nonlinear conductance and a 
nonlinear current source for NRI.  It is important to define 
an adoption of iterative methods in CIM, because a 
solution obit depends on the multi-dimensional plane 
between an initial and real solutions. 
    This paper presents an optimum adoption of iterative 
methods MPCI and NRI which are basis of CIM for 
nonlinear simulations, an effective construction of  MPCI 
and Jacobian matrices based on a multi-dimensional 
solution with Dommel’s method and an effective expression 
of MPCI and NRI on EMTP-Type simulators.   This  paper 
also demonstrates the proposed algorithm on an example 
system, and compares the result obtained with a basic 
nodal conductance approach (NCA).  The results prove the 
validity of those proposed methods for any kinds of 
EMTP-Type simulators with nonlinear elements 
 
Keywords: Nonlinear, Combined Iterative Method, 
Modified Predictor Corrector Iteration, Newton-Raphson 
Iteration, Optimum Adoption, Optimum handling, EMTP-
type Simulator. 
 
 

I. INTRODUCTION 
 
    A nodal-conductance approach (NCA) with Dommel’s 
method [1] is a basis of many Electro-Magnetic Transients 
Programs such as  EMTP, ATP [2] and PSCAD/EMTDC [3].  
In this paper, the simulators based on Dommel’s method 
are defined as EMTP-type simulators.  A piecewise linear 
approximation model of a nonlinear element is a main 
current in the field of electromagnetic transients simulators, 
where a nonlinear element can be modeled by a parallel 
connection of a linear conductance and a linear current 
injection.  However, the expression may make some 
restrictions to model a complicated nonlinear element such 
as fault arc models [4] and power electronics models [5] 
( thyristor, diode, GTO and IGBT), which are utilized in a 
simulation of a complicated system such as HVDC and 
FACTS.  A restriction of arrangements of nonlinear 
elements [6] is the one of those in the simulators, and 
instability and inaccuracy caused by the piecewise 
modeling and the arrangement can also result when applied 
to the complicated system.   
    A linear interpolation [7,8] can represent simple nonlinear 

devices using piecewise linear approximations, and results 
in stable and accurately calculated results  for any number 
of the nonlinear devices.  However, it may be difficult to 
express all kinds of nonlinear devices in this way.  
Therefore it is important to complete a more general, 
accurate and stable representation of the nonlinear 
elements. 
    CIM [9] is adopted in this paper as a basis of a transient 
calculation of nonlinear circuits.  CIM consists of MPCI 
and NRI algorithms, and a parallel connection of a 
piecewise linear conductance and a nonlinear current 
source for MPCI and a parallel connection of a nonlinear 
conductance and a nonlinear current source for NRI.  
Previous works in this area are based on Newton-Raphson 
method in SPICE [10] and non-iterative method [2] in ATP, 
but each has restrictions of the number and configuration 
of the nonlinear elements, and involves some problems 
such as instability, low efficiency, inaccuracy in 
convergency.  It is important to define an adoption of 
iterative methods in CIM, because a solution obit depends 
on the multi-dimensional plane between an initial and real 
solutions. 
    This paper presents an optimum adoption of iterative 
methods which (MPCI and NRI) for nonlinear simulations, 
an effective construction of MPCI and Jacobian matrices 
based on a multi-dimensional solution with Dommel’s 
method and an effective expression of MPCI and NRI on 
EMTP-Type simulators.   This  paper also demonstrates the 
proposed algorithm on an example system, and compares 
the result obtained with a basic NCA.  The results prove 
the validity of those proposed methods for any kinds of 
EMTP-Type simulators with nonlinear elements 
 
 

II. ITERATIVE EQUATIONS 
 

    The basis of CIM is explained in this chapter briefly.  It is 
verified that basic formulas of MPCI and NRI method for a 
nonlinear transient simulation can be expressed as a same 
equation using Dommel’s method and CIM basis, and the 
formulations make an effective construction and handling 
of nonlinear matrixes possible as in section III   
 
A. Modified Predictor Corrector Iteration 
    One of the iterative methods in CIM is MPCI method.  
MPCI method doesn’t require a lot of reconstitutions of a 
conductance matrix G at each time step and each iterative 
step, because a nonlinear element is expressed as a 
piecewise linear conductance and a nonlinear current 
injection. 
    The solution v(0)(t) of the following equation gives the 



first estimation of the iteration ( prediction ). 

( ) ))(,()()()( 0 tttttt ∆−+= vJJvG  (1) 

The improved solutions are repeatedly obtained by the 
following iteration scheme ( correction ):  

( ) ( ) ))(,()()()( 1 ttttt kk −+= vJJvG  (2) 

where k = 1, 2, … : the number of iterations.   
 
B. Newton-Raphson Iteration 

NRI gives a very efficient means of converging to a root, 
if a sufficiently good initial value can be guessed.  If it fails 
to converge, it indicates that the roots of the solution do 
not exist nearby.   

A typical problem gives N functional relations to be 
zeroed, which involves  variables xi, i = 1, 2, …,N. 
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Each of the functions Fi in eq. (3) can be expanded in 
Taylor series: 
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where x : entire vector values xi, F : entire vector of 
functions Fi.  The matrix of partial derivatives appearing in 
eq. (4) is Jacobian matrix Jc: 
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In matrix notation, eq. (4) is written by: 

( ) ( ) ( )2xxJcxFxxF δδδ O+⋅+=+  (6) 

By neglecting the term of order δx2 and higher and by 
setting F(x+δx) = 0, a set of linear equations for correction 
δx, which moves each function closer to zero is derived 
simultaneously. 

FxJc −=⋅ δ  (7) 

Eq. (7) in electrical circuits can be solved efficiently by LU 
decomposition.  A correction is then added to the solution 
vector x.   

xxx δ+= oldnew  (8) 

In an EMTP-type simulator, Jacobian matrix including 
some nonlinear elements can be constructed in an example 
with a nonlinear element between node i and j efficiently [9]. 
 Circuit vector F in eq. (7) is expressed as follows :  
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where GL: conductance of linear elements, GN:  conductance 
of a nonlinear element, JL: current source of linear elements, 
JN: current source of a nonlinear element.  From above 
relations, following Jacobian Matrix can be derived [9].  
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In eq. (12), Jacobian matrix can be efficiently constructed 
by differential function df/dv, which can be calculated 
analytically or numerically.  If the function f can be 
expressed analytically such as an arrester model, the 
differential function df/dv can often be calculated by 
analytical differentiation of f.  If the function f cannot be 
expressed analytically as a fault arc model, the method to 
differentiate the function f can be calculated numerically.  
 
C.  Unified Expression of Iterative Equations  
    The feature of eq.(8) in NRI procedures make it difficult 
to save the calculation time of a nonlinear circuit, because 
an optimum handling explained in chapter III can not be 
applied.  Therefore, it is important that MPCI and NRI 
equations eqs. (1), (2) and (7) which are basis of CIM can 
be expressed as a same equation using Dommel’s method 
and CIM basis.   
    Eq. (10) is substituted for eq. (7), and the following 
equation can be derived. 

 JGvvJc =+⋅δ  (13) 

    As the derivations of eq. (12), an example circuit, which 
includes a nonlinear element between node i and j, is 
illustrated to compare the conductance matrix G with 
Jacobian matrix Jc in eq. (13).  When a nonlinear element is 
composed of a piecewise linear conductance and a 
nonlinear current injection, the conductance matrix can be 
expressed as follows. 
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Because the piecewise linear conductance GN of a nonlinear 
element is explained as in Fig. 1, it means that GN is 
equivalent to df/dv in eq. (12).  Therefore, in CIM 



procedures, both MPCI and NRI equations can be 
constructed in the same eq. (1) and (2), but it should be 
notice that the expression of MPCI conductance, of which 
a nonlinear element is composed, is piecewise linear, not 
nonlinear as NRI conductance. 

 
 
 
 
 
 
 
 
 

MethodNRIforJvGi NRINRIN += )(  
MethodMPCIforJvGi MPCIMPCIN += )(  

Fig.1 Difference of MPCI and NRI conductance 
 
 

III. HANDLING OF MATRIXES 
 

A. Ordering of Nodes 
    When all elements in the circuit are linear, those elements 
is described by the trapezoidal rule of integration [1] in the 
following matrix equation: 

)()( ttL JvG =  (15) 

where GL : linear (constant) nodal-conductance matrix, v(t) : 
node voltage vector, and J(t) : linear current injection 
vector.  To save calculation time, the triangular 
factorization of GL is performed only once before 
advancing to the time step loop, and v(t) is calculated by 
the backward substitution.  At the end of each time step, 
J(t) is renewed to calculate v(t+∆t).   
    When the circuit involves nonlinear elements, GL 
depends on some factors as v(t).  Thus, the retriangulation 
of GL is required whenever the factors are changed at each 
time step and each iterative step [11].  
    The retriangulation of GL in MPCI is not required at each 
time step and iterative step, because the nonlinear elements 
are expressed as a piecewise linear conductance and a 
nonlinear current injection.  For the retriangulation of 
Jacobian matrix in eq. (7) is required at each iterative step in 
the NRI method, the effective computation of Jacobian 
Matrix applied the unified expression in chapter II becomes 
important.  
    The optimum ordering for the optimum handling method 
is illustrated in Fig.2. 

linear nodes nonlinear nodes

linear nodes
without switches

linear nodes
with switches

nonlinear nodes
without switches

nonlinear nodes
with switches

 

Fig. 2 Optimum ordering of nodes in G 
 
B. Optimum Handling  
(1) The advantage of LU decomposition 
    Matrix A can be written as a product of two matrices L 
and U ( lower and upper triangular matrices respectively ).  
When we solve the linear set by the following 
decomposition [12],  

( ) ( ) byLxULxULxA =⋅=⋅⋅=⋅⋅=⋅  (16) 

L⋅⋅ y = b in eq. (16) is solved to get the vector y.  Then U·x = 
y is solved to get the real solution vector x. 
    An advantage of breaking up one linear set into two 
successive ones is that the solution of a triangular set of 
equation is quite trivial.  Thus, eq. (16) can be solved by 
forward and backward substitution. 
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    The most important advantage for EMTP-type simulators 
is that once we have the LU decomposition of A, we can 
solve with as many right-hand sides b without 
reconstructions of A. 
 
(2) Crout’s algorithm for LU decomposition 
    Very efficient procedure is Crout’s algorithm [12], which 
quite trivially solves A = L·U by just arranging the 
equations in the following order. 
a) Set Lii = 1, i = 1,…,N. 
b) For each j = 1,2,3,…,N : First, for i = 1,2,…,j, use the 
following equation to solve for Uij, 
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Second, for i = j+1, j+2,…,N use eq. (20) to solve for Lij, 
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Note that the both procedures have to be done before 
going on to the next j. 
    It is obvious from the above that L and U on the right-
hand side of eqs. (19) and (20) are already determined by 
the time when those are needed.  Every Aij is used only 
once and never again, i.e. the corresponding Lij or Uij can 
be stored in the location where the Aij used to occupy.  In 
brief, Crout’s method fills in the combined matrix of L and U 
by columns from left to right, and within each column from 
top to bottom. 
 
(3) Relations between LU decomposition and Norton- 

Thevenin equivalent for nonlinear matrix equations 
    For an efficient and fast calculation of the nonlinear 
conductance and Jacobian matrices, an equivalent circuit in 
Fig.3 is proposed.  Once the equivalent circuit is 
determined, it is very efficient and fast to calculate the 
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nonlinear conductance and Jacobian matrices, because 
linear nodes in Fig.3 needs not to be changed during the 
whole time steps.  To define this equivalent circuit 
automatically for every kind of electromagnetic circuits, a 
partial LU decomposition and a partial forward and 
backward substitution based on Crout’s algorithm are 
proposed in this paper. 
 

L

L

C

C

R

NE : Nonlinear element

NE
L

NE
L

NE
L

I

 Linear equivalent circut

: Nonlinear node  
Fig. 3 Equivalent circuit for a nonlinear circuit 

 
    Node 1, 2,…, M are linear nodes and node M+1,…, N are 
nonlinear nodes on a general nonlinear conductance and 
Jacobian matrices. 
a) Set Lii = 1, i = 1,…,N. 
b) For each j = 1,2,…,M where M is the maximum number of 
linear nodes : First, for i = 1,2,…,j, use eq. (19) for Uij.  
Second, for i = j+1, j+2,…,N use eq. (20) for Lij. 
c) For j = M+1 : For i = 1,2,…,M, use eq. (19). 
    From the above steps a), b) and c), the nonlinear matrix A 
is renewed to the following matrix form. 
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It is important that renewed elements U11, L21, L31,…., UM-

1M+1, UMM+1 are constructed from the linear elements of A.  
Therefore, the renewed elements are constant for the whole 
simulation time steps and is performed only once before 
advancing to the time step loop. 
d) The linear part of y ( y1, y2,…, yM ) is calculated from the 
renewed elements U11, L21, L31,…., UM-1M+1, UMM+1 by use of 
eq. (17), and also this part is constant and is performed 
only once before advancing to the time step loop.  
e) The nonlinear part of y ( yM+1, yM+2,…, yN ) and the 
nonlinear part of x ( xN, xN-1,…, xM+1 ) are calculated 
iteratively by CIM procedure.  
f) After convergence, the nonlinear part of x ( xM, xM-1,…, 
x1 ) is calculated, and we can proceed to next time step. 
    During iterative terms, the following equations (Ln·yn = bn 
and Un·xn = yn) are executed for the nonlinear conductance 
matrix as a partial forward and backward substitution. 
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    If Ln·Un is symmetrical, eq. (22) shows that every kind of 
nonlinear circuits, which include M linear nodes and ( N - 
M ) nonlinear nodes, can be expressed as the equivalent 
circuit having only ( N - M ) nonlinear nodes as in Fig.4 
which does not include any linear nodes.  Actually in all 
the kinds of electrical circuits on an EMTP-type simulator, 
Ln·Un become symmetrical ( see appendix A1 for details and 
verification ).  From eq. (22), an equivalent conductance 
matrix and an equivalent current injection vector can be 
Ln·Un and bn respectively. 
 

 
 Linear equivalent circuit with no nodes 

M+1 M+2 …………………
……….. N Nonlinear node number 

Electrical wire 

Nonlinear element 

 
Fig. 4 Relation between LU decomposition and a nonlinear 

equivalent circuit 
 
(4) Comparison of the normal and partial method 
    A comparison of calculation times required for LU 
decomposition, backward and forward substitution  and 
convergency is given in an example case in chapter V. 
 

Basic NCA : 1.0 
CIM without proposed method : 1.21 
CIN with proposed method : 1.08 

 
A difference of the calculation times heavily depends on 
the ratio of the number of nonlinear and linear nodes, but 
the proposed partial method is very efficient for treating 
not only the huge number of nonlinear nodes but also small 
number of nonlinear nodes.  This method seems to become 
more powerful with the optimum sparse matrix method 
adopted in an EMTP-type simulator.  
 
 

IV. EFFECTIVE ADOPTION OF ITERATIONS 
 

    NRI gives a very efficient means of converging to a root, 
if a sufficiently good initial value can be guessed.  
Therefore, it is very important to exploit how the improved 
solution is calculated from a first estimated solution which 
is not a sufficiently good initial value.  So far, an effective 
adoption of iterations has not been discussed sufficiently, 
only methods of an iteration for nonlinear circuit have been 
researched. 
    CIM consists of two kinds of iterative methods, the most 
important feature of MPCI is very stable if a sufficiently 
good initial value can not be guessed, but the speed of 
convergency heavily depends on the direction of nonlinear 



conductances.  On the other hands, the most important 
feature of NRI is that the speed of convergency is very fast, 
but the stableness heavily depends on the multi-
dimensional plane between an initial and real solutions.  
Therefore, a standard of a good initial value need to be 
defined. 
    When the sign of first and second derivatives of 
nonlinear functions is  not changed on the multi-
dimensional plane between an initial and real solutions, the 
initial value is regarded as sufficiently good ( region A in 
Fig.5 ), but if the sign is changed during convergency, 
MPCI method is employed to approach to a real solution 
( region B in Fig.5 ).  Namely, if the first and second 
derivatives change their own sign during the way from 
solution xi to xi+1 and from solution xi+1 to xi+2 continuously, 
MPCI method replaces NRI one from the next iterative term 
in CIM procedures.  It means that a solution doesn’t exist 
close to the solution xi.  If the first and second derivatives 
doesn’t  change continuously, NRI method has been used 
until convergency.  After convergency by use of NRI 
method, MPCI method is employed once to make sure that 
the solution is real. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. EXAMPLE CASE 
 

    An oscillator circuit using a tunnel diode which is 
approximated in i = 2.83v3 - 2.02v2 + 0.37v is adopted as an 
example case, which shows some advantages and the 
correctness of CIM in EMTP-type simulator.  As other 
example cases for CIM (a diode rectifier circuit, an inverter 
circuit using transistors, a fault arc circuit and so on) have 
been illustrated in previous papers [4,9].  The oscillator 
circuit is  shown in Fig.6.  Simulated results with CIM 
adopting proposed schemes (∆t = 150, 5ns), and basic NCA 
results without iterations (∆t = 150, 5ns) are shown in Fig.7. 
 As it can be seen in Fig.7, the CIM results show a close 
agreement with a calculated result with small dt, and the 
results obtained with CIM adopting proposed schemes are 
almost the same using different time steps. 
 

 

15.0Ω vo 

0.24V 

1.0µH 0.1µF 

vt 

i t 

 
Fig. 6 Oscillator circuit using a tunnel diode 

 
 
 
 
 
 
 
 
 

(a) Output voltage (CIM) 
 

 
 
 
 
 
 
 

(b) Output voltage (basic NCA) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) vt – it characteristic 
Fig. 7 Calculated results 

 
VI. CONCLUSIONS 

     
    Some developments of CIM solution method has been 
proposed to realize stableness and saving calculation time 
on an arbitrary number and configuration of nonlinear 
elements in a network. One of the developments is an 
optimum handling method of the nonlinear conductance 
matrix of CIM.  The unified expression of nonlinear matrices 
has made it possible to save calculation time using the 
optimum handling based on the theory of Crout’s algorithm 
for a linear circuit.  It has also proven that an effective 
adoption of iterations contributes to the stableness of CIM 
simulations,   
    The proposed methods have been applied to an 
oscillator circuit using a tunnel diode.  Calculated results 
by the proposed method agree well with a theoretical result. 
 The proposed methods have been confirmed to be 
accurate, fast and stable even for a large time step, and can 
survive from an abrupt change due to a nonlinear element. 
    The proposed methods can be easily implemented into 
an EMTP-type simulator because the methods are 
extensions of the basic NCA method in the EMTP-type 
simulator. 
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VIII. APPENDIX 
 

A1. Proof of the symmetrical characteristic of the reduced 
nonlinear conductance matrix  
    The pre-reduced nonlinear conductance matrix A, is 
completely symmetrical. 

A=
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If we reduce the first line and column from eq. (A.1), the 
following equation is derived.  

C=
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From the symmetrical elements Cij and Cj i in the matrix C, 
Cij subtracted Cj i can be calculated as follows to prove that 
incidental matrix C is symmetrical.  
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Therefore, the reduced matrix C is symmetrical.  Namely, 
reduced all matrices which are reduced some lines and 
columns from a symmetrical matrix are symmetrical. 


