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Abstract - This paper presents the fundamental concepts
for the implementation of current and voltage dependent
sources in EMTP-based programs. These current and
voltage dependent sources can be used to model many
electronic and electric circuits and devices, such as
operational amplifiers, etc., and also ideal transformers.
As long as the equations of the dependent sources are
linear, they could be added directly to the network
equations, but the matrix will then become unsymmetric.
Another alternative discussed here in more detail is
based on the compensation method, which can also
handle nonlinear effects with a Newton-Raphson
algorithm. Nonlinear effects arise with the inclusion of
saturation or limits in the dependent sources. The
implementation of independent sources, which can also
be connected between two ungrounded nodes, is also
presented. A practical example is given to illustrate the
solution methods.

Keywords: EMTP, current controlled voltage source
(CCVS), current controlled current source (CCCS), voltage
controlled voltage source (VCVS), voltage controlled current
source (VCCS), dependent source, compensation method.

I. INTRODUCTION

EMTP-based programs are widely used in the electric
power industry and in universities for the analysis of power
system transients. Since the publication of [1], many have
contributed to the development of models, which have been
documented in [2] and elsewhere.

As far as the authors know, dependent sources of all
types have not been implemented in any EMTP-based
programs, leading to the motivation for the development of
this work. Dependent sources expand the capabilities of
EMTP-based programs for modeling many electric and
electronic circuits and devices. With a voltage controlled
voltage source, for example, it becomes easy to simulate
operational amplifiers. These can then be used to set up
control circuits with analog-computer block diagrams, which
is an alternative to the state-space representation of control
circuits and their simultaneous solution with the power
network discussed in [4].
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If the equations of the dependent sources are linear, they
can be added directly to the system of the nodal equations
used in EMTP-based programs, if a linear equation solver for
unsymmetric matrices is used. Another approach is based on
the compensation method, which is chosen here because
nonlinear equations can easily be handled as well.

This paper provides the fundamental equations for the
implementation of dependent sources, as well as of
ungrounded independent sources, in EMTP-based programs.

II. COMPENSATION METHOD

The compensation method has long been used in EMTP-
based programs  for solving the equations of nonlinear
elements with the Newton-Raphson iterative method. If the
nonlinear elements are not too numerous, this approach
confines the iterations to a relatively small system of
equations, compared to the nodal equations for the entire
system.

When there are M nonlinear elements in a circuit, the
following system of equations, (1) to (6), allows the
simultaneous solution of the nonlinear equations with the rest
of the linear network [2],[3], which is then represented by its
M-phase Thevenin equivalent circuit, as illustrated in Fig.1:
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Fig. 1 – M-phase Thevenin equivalent circuit.
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and (6) are the branch equations of the nonlinear elements:
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If the branch equations in (6) are linear, as in the case of
dependent sources, they can be represented in the form of a
voltage source behind an impedance, as illustrated in Fig. 2,
or in the form of a current source in parallel with an
impedance, as shown in Fig. 3. In this paper, it is assumed
that the branch impedances  are not coupled, and that they

are resistive ( kR ).

Fig. 2 –Representation of branch equation k as a voltage
source in series with a resistance.

Fig. 3 –Representation of branch equation k as a current
source in parallel with a resistance.
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III. DEPENDENT SOURCES

This section presents the necessary equations for
implementing current and voltage dependent sources in
EMTP-based programs. The following assumptions are
made:

1. A Thevenin equivalent circuit can be calculated
where the dependent source is to be connected, and
also where the controlling current or controlling
voltage is to be measured. In cases where this
calculation fails, the connection of large resistors in
parallel may make a Thevenin equivalent circuit
possible.

2. Proper precautions are taken to handle extremely
large numbers and zero values.

The following models are derived: Current Controlled
Voltage Source (CCVS), Current Controlled Current Source
(CCCS), Voltage Controlled Voltage Source (VCVS) and
Voltage Controlled Current Source (VCCS). In all cases, the
equations from the Thevenin equivalent circuit are the same,
namely, for the controlling branch
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where:

=
kOPENv voltage kv  for 0=ki  (open circuit).

kkr = Thevenin resistance (self resistance of branch k ).

kjr = Thevenin resistance (coupling or mutual resistance

between branches k  and j ).

A. Current Controlled Voltage Source (CCVS)

Assume that the controlling current is measured through

a branch between  nodes a  and b  in a circuit, such that jv

is its branch voltage and ji is its branch current, i.e.,

baj vvv −=   (9)

abj ii = (10)

and that the dependent source, CCVS, is connected
between  nodes c  and d  with branch voltage

dck vvv −= (11)

and branch current

cdk ii = . (12)

Then the necessary equations for the implementation of
this current controlled voltage source are (7) and (8) as well

as:

j in jv R i= (13)

k j out kv i R i= Ω + (14)

where:

inR = Input resistance of branch j .

outR = Output resistance of the dependent source in branch

k .

Ω = Gain over the controlling or measured current,
applied as dependent source at branch k .

From (7), (8), (13) and (14), one can also obtain the
following equations:
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For an ideal current controlled voltage source, 0inR =
and 0outR = , from which results:
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B. Current Controlled Current Source (CCCS)

The necessary equations for the implementation of a
current controlled current source are (7) and (8) as well as:

j in jv R i= (19)

k out j out kv R i R i= Β + (20)

where:
Β = Gain over the controlling or measured current,
applied as dependent source at branch k .

From the equations above and from (7) and (8), one can
also obtain the following equations:

( )
1 1 ...

... ... 0

jOPEN j

jj in j jk k jM M

v r i

r R i r i r i

− + +

+ + + + + =
(21)



1
1 ...

... 1 ... 0

KOPEN k

out out

kj kk kM
j k M

out out out

v r
i

R R

r r r
i i i

R R R

− + +

   
+ + Β + + + + =   

   
(22)

For an ideal current controlled current source, 0inR =
and outR → ∞ , resulting in:
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C. Voltage Controlled Voltage Source (VCVS)

The necessary equations for the implementation of a
voltage controlled voltage source are (7) and (8) as well as:

j in jv R i= (25)

k j out k in j out kv v R i R i R i= Α + = Α + (26)

where:
Α = Gain over the controlling or measured voltage,
applied as dependent source at branch k .

From the equations above and from (7) and (8), one can
also obtain the following equations:

1
1 ...

... ... 0

JOPEN j

in in

jj in jk jM
j k M

in in in

v r
i

R R

r R r r
i i i

R R R

 
− + + 

 
+ 

+ + + + = 
 

(27)

1
1 1 ...

... ...

... 0

K

j

OPEN k
OPEN j

kj kk out
jj j jk k

kM
jM M

v r
v r i

r r R
r i r i

r
r i

 − + + − + Α Α 
  + + − + − +   Α Α  
 + − = Α 

(28)

If Α → ∞  , inR → ∞ , and 0outR →  for an ideal

voltage controlled voltage source, we obtain:

0=ji (29)

1 1 ...

... ... 0
jOPEN j

jj j jk k jM M

v r i

r i r i r i

− + +

+ + + + =
(30)

Equations (29) and (30) can be used to model ideal
operational amplifiers.

D. Voltage Controlled Current Source (VCCS)

The necessary equations for the implementation of a
voltage controlled current source are (7) and (8) as well as:

j in jv R i= (31)

k out j out kv R v R i= Γ + (32)

where:
Γ = Gain over the controlling or measured voltage,
applied as dependent source at branch k .

From the equations above and from (7) and (8), one can
also obtain the following equations:
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For an ideal voltage controlled current source,

inR → ∞  and outR → ∞ , resulting in:

0=ji (35)
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IV. IDEAL TRANSFORMERS

Even though an ideal transformer model has already been
implemented in EMTP-based programs with a special
connection of 8 resistances and an extra node [2], it can also
be implemented as a special dependent source.  The
necessary equations for the implementation of an ideal
transformer are  (7) and (8) as well as:
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= = = reciprocal of the turns ratio of the ideal

transformer.
From the equations above and from (7) and (8), one can

easily obtain:
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Equations (39) and (40) can be used to model an ideal
transformer in EMTP-based programs.

V. INDEPENDENT SOURCES

It may be useful in a circuit or device model to have an
independent current or independent voltage source connected
between two ungrounded nodes. This can be accomplished
by the same technique used for the implementation of
dependent sources, but using only one equation in this case.

A. Independent Current Source

Assuming that the independent current source is
connected between nodes c  and d  with branch voltage

dck vvv −= (41)

and branch current

cdk ii = (42)

then the necessary equations for the implementation of an
independent current source are:
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k out source out kv R i R i= + (44)

where:

sourcei =  independent current source at branch k , which

can be a linear or nonlinear function of time, etc..
From the equations above, one can also obtain the

following equation:
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For the ideal current source, outR → ∞ , resulting in:

0=+ sourcek ii (46)

Of course, there is a much easier way to represent an
independent current source between nodes c  and d  directly
in the nodal equations of the EMTP: inject the current source
into node c  and with a negative sign into node d  [2].

B. Independent Voltage Source

The necessary equations for the implementation of an
independent voltage source are:
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k source out kv v R i= + (48)

where:

=sourcev  independent voltage source at branch k , which

can be a linear or nonlinear function of time, etc..
From the equations above, one can also obtain the

following equation:
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In an ideal voltage source, 0outR = , resulting in:
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Another approach for voltage sources between
ungrounded nodes frequently used in EMTP-based programs
is the insertion of an ideal transformer between the two
ungrounded nodes, with a voltage source to ground on the
other side.

VI. POSSIBLE APPLICATIONS

1. Current and voltage sensors;
2. Operational amplifiers;
3. Ideal Transformers;
4. User-defined coupled branches in a circuit;
5. Modeling of electronic components, where the

physical behavior would need to be represented by
nonlinear equations;

6. Instantaneous solution of linear and nonlinear
control systems;

7. User-defined linear and nonlinear functions;
8. User-defined modeling of linear and nonlinear

devices, limited only by the creativity and ingenuity
of the user.

Fig. 4 and Fig. 5 illustrate the solution method with an
example of a noninverting amplifier circuit, which consists of
a sinusoidal voltage source, an ideal operational amplifier

and 2 resistors ( fR  and gR ). The ideal operational

amplifier was modeled using (29) and (30), whereas the
sinusoidal voltage source and the resistors are part of the
network, represented through a Thevenin equivalent circuit.

If 2f gR R= , then 3output inputv v= , as shown in Fig. 5.

Fig. 4 – Circuit with ideal operational amplifier.

Fig. 5 – Simulation results of circuit with ideal operational
amplifier (noninverting amplifier circuit).

Indeed, in theory this noninverting amplifier circuit
should result in:

1output f

input g

v R

v R

 
= +  

 
(51)

VII. CONCLUSIONS

The implementation of current and voltage dependent
sources in EMTP-based programs has been presented, as
well as the implementation of independent sources which
may be connected between two ungrounded nodes. It is
based on the compensation method, which is already being
used to solve nonlinear equations associated with nonlinear
elements in electric or electronic circuits with Newton-
Raphson iteration schemes. The method looks promising for
future work in detailed modeling of circuits and devices.
Future improvements will consider the implementation of
saturation or limits for the elements or sources presented in
this paper.
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