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Abstract - Linear system techniques can be ap-
plied for the analysis of electromagnetic tran-
sient phenomena, harmonics or the calcula-
tion of reduced order equivalents. These tech-
niques are usually based on a continuous time
state space description of the electrical net-
work. However, the definition of state vari-
ables in a meshed network is a difficult task be-
cause the physical storage quantities, such as
inductive currents and capacitive voltages, gen-
erally don’t lead to an independent set of state
variables. This paper describes a discrete time
state space approach allowing to calculate linear
system characteristics without the necessity of
identifying independent state variables.
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I. INTRODUCTION

Linear system techniques have successfully been ap-
plied for the analysis of electromagnetic transient phe-
nomena, particularly in the context of reduced order
equivalent systems, harmonics or very fast simulation
algorithms for real time applications. These techniques
are based on a state space description of the electrical
network. However, the definition of state variables in
a meshed electrical network is a difficult task because
the physical storage quantities, such as inductive cur-
rents and capacitive voltages, generally don’t lead to an
independent set of state variables.

Different approaches to overcome this problem have
been described at previous IPST conferences, e.g. the
Modified Nodal Voltage Approach[1] or the Augmented
State Space Formulation[2]. Both approaches are based
on a continuous time description of the electrical net-
work and require therefore approximations for the con-
sideration of distributed parameter line models. This
paper proposes an alternative approach based on a state
space analysis in the discrete time domain.

Discrete time difference equations are widely used in
simulation programs for analyzing power systems tran-
sients. The most popular approach is the difference
conductance method, first implemented in the EMTP
by Dommel [3] in the early seventies. The greatest ad-
vantage of difference equation methods is the simplic-
ity of the solution process: By converting the differen-
tial equation of each branch element to a discrete time

equation using e.g. the trapezoidal rule, each branch el-
ement can be described by either an equivalent current
source with a parallel conductance or by an equivalent
voltage source with series resistance.

In this paper, it is first described, how the difference
equations of the various branch elements can be com-
bined to a discrete time state space system for the entire
network. Then, a modal transformation is applied to
the discrete time system by calculating the correspond-
ing eigenvalues and eigenvectors. It is then analyzed,
how eigenvalues and eigenvectors are distorted by the
discretisation with finite step size. Using the obtained
relationship between ideal and distorted eigenvalues,
the exact eigenvalues of the original, continuous time
system can be regained. The inclusion of distributed
parameter line models into the discrete time state space
approach completes the description of the methodol-
ogy. The paper concludes by discussing the benefits
and disadvantages of the presented approach compared
to classical, continuous time methods, specially with
regard to precision and computational efficiency when
distributed parameter line models need to be consid-
ered.

II. DISCRETIZATION OF BRANCH ELEMENTS

Linear, first order branch elements of electrical net-
works can generally be described by implicit differential
equations of the form:

y(t) = Fi(t) + Hx(t) (1)

In case of inductive branch elements, equation (1) has
the form of a voltage equation:
di .
v(t) = L% + Ri(t) + vs(t) (2)
Capacitive branch elements are directly resulting in cur-
rent equations:

it) = c% + Gu(t) +is(t) (3)

For describing an electrical network as a set of discrete
time difference equations, these branch equations have
first to be transformed into difference equations and
then combined to an equation system for the entire net-
work.

Basically, any implicit numerical integration method



of the form

&(t+h) = Qu(t + h) — Qh(t + h) (4)
hy(t +h) = f(a;(t),...,a;(t—nh),a}(t),...,jj(t—mlzé))

can be used for discretizing the continuous time branch
equations (2) or (3) (e.g. [4]).

The expression h,(t) is the so called history term and
comprises values of x and & at previous time steps. (2
is a constant that is usually inverse proportional to the
discretisation step size h and has therefore the unit of
a frequency.

In case of the Implicit Euler method, Q and h,(t) are
defined as follows:

1
Q=
X (©)
hy(t+ h) = x(t) (7)
The Trapezoidal Rule is defined by setting:
2
Q=
- ®)
he(t + h) = z(t) + Q Li(t) (9)

The first order branch equations (2) and (3) can now
be descretized by replacing the derivatives with the ap-
proximative formula (4):

o(t + h) = LQ(i(t + h) — hi(t + b))

+ Ri(t+ h) + vs(t + h) (10)
i(t+h)=CQ(t+h)—hy(t+h))
+Gu(t+h) +i(t+h) (11)
Or, by reordering (10) and (11):
v=(LQY+R)i— LQ h; + v, (12)
—_——— ~~
Zr Xr
i=(CQ+G)v—CQ hy +is (13)
— 7
Yo c

The time arguments can be omitted, because (10) and
(11) are valid for every moment in time. Any time de-
pendence and consequently any storage property occurs
only in the calculation of the history terms. Hence, the
equations (12) and (13) can be interpreted as equiva-
lent voltage and equivalent current sources respectively
(see figure 1).

It is also important to mention that the representation
according to (12), (13) is independent of the applied
discretization method.

III. THE MODIFIED NODAL APPROACH

There are different possibilities for combining the
equivalent voltage and current source equations to an
equation system for the entire network. The most pop-
ular approach is certainly the Nodal Voltage Approach.
Here, the vector of unknowns consists of all nodal volt-
ages and the resulting system matrix is equivalent to
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Fig. 1. Equivalent voltage- and current source repre-
sentation

the complex node admittance matrix that is well known
from steady state network analysis.

However, with respect to the discrete time state space
representation, it is advantageous to build an equation
system, in which all storage variables, such as inductive
currents and capacitive voltages appear in the vector of
unknowns.

Using the Modified Nodal Approach [5], a vector
of unknowns can be defined that consists of all node
voltages and all inductive currents. This vector of un-
knowns does not build a minimum set of state variables,
but it comprises all storage quantities of the system.

The Modified Nodal Approach (MNA) can be derived
by writing Kirchoffs current law in the following form:

Ki=0 (14)
The matrix K is the node-branch incidence matrix of
the network and % is the vector of all branch currents
(inductive and capacitive).

The relationship between the vector of branch voltages
v and the vector of node voltages v,, is the following:

v=K"v, (15)
The vector of branch currents 2, as well as the node-
branch incidence matrix is now partitioned into a sub-
matrix describing all capacitive elements and a sub-
matrix describing all inductive elements:
=0

Ko K[ (16)

Replacing i¢ in (16) by (13) and applying the relation-
ship between branch and node voltages (15) leads to-
gether with the equations for inductive branch elements
(12) to the following two matrix-equations:

KcYcKLv,— KcBeh,+ Keig+ Kpip =0
%/_/
Y.c

(17)

—K{’l}n +Zit, — Xphiy, +v,=0
(18)

Applying (15) also to the voltage history terms:
h, = K{hy,

the MINA system can be written in the following matrix-



vector form:

Y. Kip| |va|
KT zp|lio| ~

N————
H,,
KcBeKE 0] [he,]  [Keis (19)
0 XL hiL (N

H,
The system matrix H,, of the MNA is a hybrid matrix
of real numbers consisting of difference conductances
Y ¢, difference resistances Z; and some elements of
the node-branch incidence matrix.
The hybrid matrix H, relates the history terms h;y,
and h,, to the equation system.

IV. ExpLiCIT DIFFERENCE EQUATION SYSTEM

For the calculation of eigenvalues and eigenvectors,
the implicit difference equation system according to
(19) must be transformed to an explicit system of equa-
tions:

z(n+1) = Agz(n) + Bqw(n + 1) (20)

In this discrete time state space system, the state vec-
tor is built by . The vector w is a vector of input
variables, which are are supposed to be known at each
time step.

The transformation of (19) to the explicit form ac-
cording to (20) consists basically of replacing the his-
tory terms by the values of the state vector at previous
time steps. Hence, the explicit form depends on the
actual discretization method.

A. State Space Form with the Implicit Euler Method

When using the Implicit Euler Method for discretiz-
ing the branch equations, the explicit form can be ob-
tained without any difficulties by replacing the history
terms in (19) with (7). The resulting implicit difference
equation system is:

m ] =[] - [t e

Inverting H,, leads to an explicit difference equation
system with the following definitions according to (20):

T = [’Z’ﬂ (22)
w = [:}] (23)
Ag=H,'H, (24)
B,=-H,' [If)c 2] (25)

B. State Space Form with the Trapezoidal Rule

When the Trapezoidal Rule is used for building the
explicit difference equation system, the procedure is

slightly more complicated than in case of the Implicit
Euler Method, because the derivatives &(t) appear in
the formula for calculating the history terms (9).

In [4], a method is proposed in which the derivatives
a(t) are replaced by the first order branch equations
(2) and (3). However, this approach requires explicit
branch equations, which can lead to difficulties in case
of more complicated power systems elements.

Alternatively, the history terms h;;, and h,, can be
used as discrete time state variables instead of the phys-
ical variables v,, and 2;,. The great advantage of this
approach is that the first order branch equations can
remain in their implicit form (2) and (3). At any time
step, the physical quantities can easily be regained from
their corresponding history values.

For deriving the explicit difference equation system
based on the Trapezoidal Rule, equation (4), which is
valid at any time step is rewritten for time step ¢. To-
gether with the formula for calculating the history term
h.(t + h), the trapezoidal rule can be expressed as fol-
lows:

@(t) = Qx(t) — Qhy(t)
he(t 4+ h) = x(t) + Q7 Li(t)

(26)
(27)

From these two equations, the vector of derivatives &(t)
can be eliminated resulting in:

hy(t + h) = 2x(t) — hy(t) (28)

The MNA system according to (19) can now be trans-
formed into a discrete time state space system by solv-
ing (19) for v,, and %; and inserting the resulting ex-
pression into (28):

(29)

|:’UTL} — HT_Lth |:hvn:| _ HT—Ll v

’iL hiL

KCis:|

et o] = ezt )] -

KCis (t)
v4(t)

This equation system is equivalent to a discrete time
state space system according to:

2H !

n

| @

z(n+1) = Agz(n) + Baqw(n) (31)

The difference between the forms (31) and (20) is in the
consideration of the input vector w at different time
steps, which doesn’t cause any major difficulties but
which must be considered in the analytical solution.

»=[3] @
w = Lﬁ ] (33)
Ay=2H;'H, -1 (34)
B, =—2H," [K[;c 2] (35)



The vector of node voltages v,, and inductive branch
currents 2z, can be calculated by using (28):

nol =3 (et in] + o))

V. APPROXIMATE SOLUTION OF THE
HOMOGENEOUS SYSTEM

(36)

The solution of the discrete time state space equation
system (20) is (e.g. [6]): !
k—1 .
z(k) = Alz(0) + > Ay Baw(j)
j=0

(37)

The transition matrix A, can either be calculated di-
rectly by multiplying the system matrix A4 k times, or
by calculating A’; in the modal domain:

220 .00
k .
ab=v |0 A Uy (38)

The values z; are the eigenvalues of Ag.

For evaluating the precision of the discrete time solu-
tion, (38) is compared to the the solution of an equiv-
alent, continuous time system:

m(t):@(t—to)m(t0)+/ &(t — r)Bw(r)dr (39)

to

In case of linear, time invariant systems of the form

T = Az + Bw (40)
the transition matrix ®(t — to) is defined by:
B(t — ty) = eAltt0) (41)

Assuming that a set of linear independent eigenvectors
exists and setting h = t—tg, the transition matrix ®(h)
can be calculated as follows:

eMh 0 .. 0
A2h
amy=v|" ¢ vt )
0 eA'nh

Comparing (38) and (42), the following well known re-
lation between discrete time and continuous time eigen-
values can be found:

2 & el (43)

It has been assumed that the eigenvectors of the dis-
crete time and the original, continuous time system are
equal. This will be verified later in this paper.

I The system according to (31) can be solved by setting w(j —
1) in (37)

VI. EXACT SOLUTION OF THE HOMOGENEOUS
SYSTEM

Outgoing from a continuous time state space system
according to (40) a procedure for calculating the exact
transition matrix ®(h) from the discrete time system
matrix Ay will be derived in this section.

A. Implicit Euler Method

Applying the implicit Euler method to the homoge-
nous part of the continuous time state space system
results in:

QO (z(t +h) — z(t) = Az(t + h) (44)

Solving (44) for x(t+ h), the following relation between
A, and A can be found:

Ag=0(Qr-A)"" (45)

Each corresponding eigenvalue and eigenvector of A is
defined by the following equation:

A’Ui = /\i'Ui (46)

Consequently, \; and v; also comply with the following
equation:

(QI — A) v = (Q - /\z) vU; (47)
Multiplying (47) by Q(QI —A)™" and 1/(Q— X))

leads to the following relation between discrete time
and continuous time eigenvalues:

O v, =Q(QI - A) v (48)
N——’ Ay

Hence, the original eigenvalues can be calculated from
the discrete time eigenvalues with:

1
A\ = 02

(49)
According to (48), the eigenvectors of the discrete time
system are equal to the original eigenvectors. There-
fore, by using (49), the exact transition matrix (42)
can be built just by using the eigenvalues z; of the dis-
crete time system. The main diagonal elements of the
transition matrix (42) are then defined by:

b zizlgp

e e i (50)

The approach described in this section is based on the
assumption that the vector & consists of linear indepen-
dent state variables. When starting from a difference
equation approach however, the elements of x are usu-
ally not linear independent. The corresponding contin-
uous time system is hence a mixed system consisting of
differential and algebraic equations.

However, the discrete time system defined by the ma-
trix Ay and consequently the transition matrix ®(h)
according to (50) can be built without any problems,
even without linear independent state variables. As



a result, the method for analytically solving differen-
tial equation systems that is presented here, does not
require any set of linear independent state variables,
which highly simplifies the solution process.

But how does the transition matrix looks like in
case of algebraic equations? This question can be an-
swered by considering that each dependency between
state variables results in a zero eigenvalue z; = 0 of the
matrix A4. The corresponding elements in the modal

transition matrix e*! are then also equal to zero be-
cause of:
z;—1
. ilop
lim e = =0 (51)
z;—0

The validity of the general approach (37), also in case
of mixed algebraic-differential equations can be shown
using singular perturbation considerations (e.g. [7]).

B. Trapezoidal Rule

A similar approach leads to the following equation for
calculating the continuous time eigenvalues based on
a difference equation system obtained with the trape-
zoidal rule:

Zi — 1
A= 52
¢ zi+1 ( )
As before, continuous time and discrete time eigenvec-
tors are equal.

VII. INCLUSION OF DISTRIBUTED PARAMETER LINE
MODELS

The particularity of distributed line models is the
ideal time delay involved. A frequency independent,
single phase line can be described with the following
equations:

U1 (t) = ’th(t — T) + chl(t)
U2(t) = Uh1 (t — T) + ZCiQ(t)

(53)
(54)

The line history voltages vp1(t) and vy (t) are defined
as follows:

Vh1 (t) = a(m (t) + chl(t))
Vh2 (t) = a(’U2 (t) + ZciQ (t))

(55)
(56)

The time constant 7 of the ideal time delay is the travel
time of the line, Z, is the surge impedance and a rep-
resents a frequency independent damping.

Frequency dependencies of surge impedance Z. and
transmission coefficient a are usually approximated by
rational transfer functions (e.g. [8]), which can be dis-
cretized and included in the discrete time state space
system as shown in the previous sections.

In continuous time approaches, the ideal time delay
needs to be approximated, e.g. by the Padé approxi-
mation, as suggested in [2]. Alternatively, network line
models, such as equivalent II- or T-sections or pole-
fitting approaches as described in [9] can be used.

In a discrete time state space system, however, ideal
travel times can ideally be considered, if the travel times

L
Po [Je o=l Olme-n e
T

of the modeled lines are integer multiples of the dis-
cretization step size.

Line equations can then be included in the MNA as
equivalent voltage sources. But in contrast to inductive
branch elements, the history voltages v, and vps of the
line equations depend on voltage and current.

The procedure of including distributed parameter
line models into the discrete time state space formu-
lation will be shown with the following example.

VIII. EXAMPLE

idl ZC Zc id2

Unl —> —
LT

Fig. 2. Example network

The configuration according to figure 2 is used to
demonstrate the inclusion of distributed parameter line
models into the discrete time state space system.

First, the line history voltages need to be included in
the vector of state variables. The vector of unknowns
consists then of the nodal voltages v,,, the currents of
inductive branch elements 27, and the branch currents of
distributed parameter line models ¢4. The MNA sys-
tem of the configuration according to figure 2 can be
expressed as follows:

G; 0 0 1 0 Ul

0 0 1 0 1 Up2

0 -1 Zr O 0 iL | =

-1 0 0 Z. O td1

0 -1 0 0 Z _idg_

00 0 0 0] [hn] [ Do

00 0 0O hyn2 0

0 0 X 0 O hir, | + 0 (57)
0 0 0 0 0 hidl —Up2 (t — T)

0 0 0 0 0 hid2_ —Uhp1 (t — T)

For transforming (57) into a discrete time state space
system, the line-history terms have to be replaced. This
can ideally be done if the travel time 7 of the line is an
integer multiple of the discretisation step size h.

The travel time requires 2k additional state variables
with & = 7/h. Using in this example 7 = 2h, four more
state variables have to be added:

S11 (t + h) = Up1 (t) (58)

812(t + h) = S11 (t) (59)
and for the other side of the line:

S921 (t + h) = Up2 (t) (60)

5292 (t + h) = S921 (t) (61)

The next step consists of eliminating vy, and vpe from
(57), (58) and (60), using the line equations (55) and



(56) that can be expressed in the following matrix-
vector form (with a = 1, ideal line):

Un1
o] 1 00 Z 0 ‘;”2
vl (001 0 0 Z.||.F
1d1
142

(62)

Together with the node incidence matrix of line models
K ; and the branch impedance matrix Z, of all dis-
tributed parameter line models (62) can be rewritten
as follows:

Unl

v Un2

hl T -
= [K? 2z, 63
[Um] (K3 ] Z’dLl (63)

iq2

From (63), the vector of unknowns can be eliminated
using (57):

[vhl(t)] _ {311(t+h)] _

Vh2 (t) 521 (t + h)
hvnl (t) IO
hoyna(t) 0
([KY z)H,") | Hp | hi(t)|+] 0
hia (t) —592(1)
hiaz(t) —512(1)

(64)

Replacing the vector of node voltages and branch cur-
rents in (57) by the corresponding history values using
(28), (59) and (61) leads finally to the explicit state
space system:

hyni (t + h) hoyn1 (t)
hvn2 (t + h) hvn2 (t)
hiL(t+h) | = (2H,"Hy —I) | hir(t) | —
higi1(t + h) hiar (t)
hig2(t + h) hiaz (t)
_IO
0
2H,' | 0 (65)
S921 (t)
S11 (t)

The equations (64) and (65), together with (59) and
(61) are building an explicit discrete time state space
system with state vector

(hoins Pvzn, hiv, hiay, hiaz, 811, 512, 821, S22).

IX. CONCLUSIONS

In case of linear networks, the explicit difference
equation system offers the great advantage of solving
the system directly, without the necessity to calculate
every single step recursively. Hence, simulations with
larger step size can be performed while keeping the dis-
cretisation error small leading to extremely fast algo-
rithms as required by real time transient simulators.

Additionaly, the paper has shown, how the solution of
the original, continuous time system can be found by
calculating eigenvalues and eigenvectors of the corre-
sponding discrete time system. Because the eigenvalue
mapping is exact, this solution is completely free of any
discretization error. An additional advantage of the ex-
plicit form is the ability of expressing system character-
istics by means of eigenvalues and eigenvectors, which
can further be used for system reduction or harmonics
analysis.

Finally, distributed parameter line models have been
included. Those line models can ideally be represented
in a difference equation system if the travel time of the
line is an integer multiple of the discretisation step size.

It is evident, that the techniques presented are re-
lated to linear or linearized systems. However, many
transient problems in electrical networks can be solved
with linear power systems elements. A possible way of
considering non linear elements could be the approxi-
mation of nonlinear characteristics by piece wise linear
functions.
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