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Abstract - The paper presents an approach for the
calculation of single-port and two-port network
equivalents. These are meant to be used for the analysis
of electromagnetic transients in power systems. The
new approach is based on time-domain fitting and
_enforces some degree of sparsity for the equivalent. The
calculated equivalent is appropriate for direct interface
with the rest of the system in time-domain. The issues of
order, stability, passivity, and initialization of the
equivalent are discussed. Results demonstrating the
accuracy and computational efficiency of the method
are presented.

Keywords: Network Equivalent, Electromagnetic
Transients, Time-domain Fitting, Discrete Time.

I. INTRODUCTION

The design and operation of modern electric power
systems rely increasingly on transient studies. In such
studies there is usually a study zone, a restricted portion of
the system, and an external system, which comprises the
rest of the system. For the study zone, in contrast to the
external system, we seek detailed information about its
voltages and currents. If a complete representation is
adopted for the external system, the computational effort
required for the calculations may be excessive. This is
particularly true when frequency dependent models are
_used for transmission lines. Even if only a part of the
external system is to be used in the calculgfion, it is
difficult to establish which part should be neglected.
Network equivalents are used in this situation to reduce the
computational burden for the transient calculation of the
whole system by providing a suitable representation for the
external system. They can be obtained using either
frequency-domain or time-domain fitting techniques.
Various methods relevant to network equivalent
calculations with their merits and limitations are described
in [1-8].

This paper presents a methodology for deriving a
Sparse Network Equivalent (SNE) based on time-domain
fitting procedures. The required data is obtained from the
computed time-domain response of the network. The
presented method enforces some degree of sparsity while
preserving the accuracy of the equivalent. Rational models
are used to represent the external system as either a single-
port or a two-port equivalent. As it is derived in discrete-
time domain, the SNE can be directly interfaced with the

FRTY

study zone for the simulation of electromagnetic transients.
Several issues regarding its calculation, like the order,
accuracy, sparsity, stability, and passivity of the equivalent,
are discussed. The computational efficiency of the
equivalent is ensured by its sparsity, especially when a

_small time step is needed.
" The discrete-time nature of the equivalent easily

handles initial conditions. When dealing with transient
simulations from the steady state, the initial conditions for
the external system, accounting for the presence of sources,
can be readily implemented in the equivalent This
increases further the computational efficiency of the SNE.
Accuracy and computational efficiency in the context of
electromagnetic transients analysis have been discussed in
[9-15].

The rest of this paper is organized as follows. Section II
presents the details of the equivalent calculation. How the
equivalent handles initial conditions is presented in Section
II. In Section IV results are given for validating the
methodology in terms of accuracy and efficiency
(including or not simulations with initial conditions) as
well as to show its limitations. Conclusions are stated in
Section V.

II. NETWORK EQUIVALENT CALCULATION

The networks (external systems) to be equivalenced
using this method are assumed to be linear networks. A
linear system, seen as either a single-port or two-port
network, can be fully characterized in the discrete-time
domain by a linear constant-coefficients difference
equation if time invariance and zero initial state are
assumed [16,17]. Discrete-time domain is used here since it
is closely related to the kind of data assumed for the
equivalent. If the data is obtained from a transient
calculation program, using a fixed time step, it is
considered as accurate information for the system under
study, disregarding the errors incurred by the discretization.
Considering that current, i(n), and voltage, v(n), data
sequences of length N taken at the ports of the external
system, are available, the following difference equation, of
order p (related to the output), characterizes the external
system [16,17] and the equivalent

P 9
> 4i(n-k)=) Bv(n=k) (n=0,..N=-D,1)
k=0 k=0

where g is the number of past terms in the input, 4, and B,,
are constant coefficients that describe the equivalent and to
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be determined. For the single-port case, A, and By, in (1)
are scalars and for the two-port case they are 2x2 matrices.
Similarly, the currents and voltages in (1) are scalars for
the single-port case and 2x1 vectors for the two-port.
Rearranging the terms in (1), setting the value of 4, to 1
(single-port) or to 2x2 identity matrix (two-port) and g = p
(see Section C below), we get the normalized equation

P
i(n) = Bov(n)+Z(Bkv(n-k)-A,,f(n—k)). 2)
k=1
The coefficient By, in (2), has the dimension of admittance
and the term under the summation is calculated only from
past values. Equation (2) is in the appropriate form to
integrate the equivalent into a transient calculation
program. The calculation of the equivalent boils down to
identifying 4, and B,. In the following, a procedure to
determine 4, and B, while ensuring the sparsity of the
equivalent, is presented. For multiphase  systems,
equivalents can be obtained using this procedure by
treating each mode separately via modal decomposition.

A. Identification of Ay, By

A unit step voltage is used to produce the voltage and
current sequences of (1) as it provides information on both
high and low frequency characteristics of the external
system. Equation (1) is rewritten in matrix form leading to
a set of linear equations. For the single-port case we seek
the scalars ai (ai,..., @) and by (bo,..., by). Using the
following convolution matrices from the corresponding
sequences i(r) and v()

o o0 . 0 g, - 0 » 0]
0o . 0 v vy . 0
I= g2 Ip3 - 0 , V=|vp1 Vpa - 0 ,3)
ipq dp2 - iy Vo Va1 - Vo
liv-2 i3 - dnopa [VN-1 VN2 - YN-pi |

where the subscripts in the variables i and v indicate the
time index in the sequences, we build (4), which is used for
the determination of a; and by

Al _
[r -V{bk]— L, @

This method of solution is related to Prony’s work [18],
which deals with the impulse response of linear systems
and would lead to a different set of equations.

For the two-port case, we choose to work with only one
set of coefficients related to the output (currents). This
means that the two ports will share the same set of poles
and the matrices 4; will be diagonal with equal elements.
The symmetry and stability (see Section D below) of the
equivalent is thus facilitated. For the determination of 4
and B,, we use 5 sequences obtained in the following way.
With port II short-circuited, we take the voltage at port I,
vi(n), the current at port I, ix(n), and the current at port II,
iin(n). Similarly, with port I short-circuited, we take the
voltage at port IL, vg(n), and the current at port IL in(n).
Due to the symmetry of the external system, it is not
necessary to use igi(n), since it is equal to irp(n). These

sequences are used to obtain each element of the matrices
A, and By as

a 0 bﬂt ka
aofi o acln S2) o
ay LIk Ik

using (6), which was built using the convolutions matrices
of the voltages and currents listed above:

I ;
I -1 0 0 b -1

Ik ;
Iy 0 -¥g O, |[=|~0| 6
Ly 0 o | ™| i

bLHk

The number of unknowns we seek is 2p+1 or 4p+3,
solving (4) or (6), for the single-port and two-port cases,
respectively. We use N greater than 2p+1, thus, (4) and (6)
are overdetermined and a solution in the least squares sense
can be obtained for the unknowns. Our studies indicate that
a redundancy around 2 results in a good overall accuracy.
Obtaining a solution for A, and By, one should evaluate if
(/) the desired accuracy is achieved, and (i) the.deduced
equivalent is both stable and passive. Equations (4) and (6)
produce non-sparse equivalents, the sparsity is treated next.

B. Sparsity in the identification of Ap By

When used in the simulation of transients, the non-sparse
equivalents obtained from (4) or (6) usually require less
computational effort than the calculations with the
complete representation would require. However, if the
ultimate goal is speed rather than maximal accuracy, a
sparse network equivalent can be obtained. This requires a
few modifications of the above procedure. There is a trade-
off between the degree of sparsity and accuracy: the higher
the sparsity the lower the accuracy. The sparse network
equivalent usually has the same (or even higher) dynamic
order p as the non-sparse equivalent but at a reduced
computational burden. To calculate a sparse equivalent we
eliminate some of the unknowns by setting them to zero.
The procedure is exemplified for the single-port case as
follows (the two-port case is similar):

= Step 1: Obtain a basic solution for a; and b, using (4);
= Step 2: For the desired sparsity Ns (number of non-zero
coefficients for each set a; and by), the calculated a, and b,
from Step 1 are scanned to identify the positions of the Ns
largest coefficients. These values are of course not the best
ones and they have to be recalculated as follows;

= Step 3: All the coefficients other than those Nj
identified in Step 2 will be zeroed and do not contribute to
(4). To build the sparse version of (4), modify matrices /,
keeping only the columns corresponding to the Ny largest
coefficients for gy and by ;

= Step 4: Solve (4), built with the sparse versions of /
and V, and address the solution to the corresponding
positions of the Ny largest coefficients, resulting in sparse
sets of coefficients a; and by;

= Step 5: Check for stability and passivity of the
equivalent, using the criteria presented in Section D. Check
for the desired overall fitting error. If the stability, passivity
and fitting requirements are not satisfied, Ns is increased
and the procedure is repeated from step 2 to step 5
iteratively until the requirements are satisfied. Another
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search strategy is to start with non-sparse sets of
coefficients and iterate to increase the sparsity as much as
the criteria for fitting, stability and passivity permit.

For the two-port case we deal with sets a, by, bm and
bynk. Usually the number of non-zero coefficients for ay is
larger than the other sets, since it carries the burden of
fitting 3 current sequences. It is also possible to reduce N
for the set by as it has many leading zeros accounting for
the time delay between the two ports.

Equation (4) or (6) does not usually result in a full rank
problem, especially when the ground mode is considered
(see Section C below). Then the basic solution from step 1
is best obtained using methods based on QR
decomposition. This is due to the fact that these methods
can automatically set to zero a number of variables
corresponding to the rank deficiency [19], thus providing
ab initio some sparsity.

C. Determination of the order of the equivalent

The following analysis is based on the-single-port case and
the implications for the two-port case are presented in the
sequel.

As shown before, we use the same number of past
terms, g = p, for both sets of coefficients, ax and by. This is
not a restrictive assumption; it is based on the analysis of
the current wave reflections in an open-ended single-phase
transmission line excited by an ideal voltage source. Thus,
to account for time delays and multiple reflections due to
the transmission line, one must use the same order for a;
and b;. This analysis also provides information about the
value of p, the order of the equivalent, which must be twice
the travel time of the transmission line divided by the time
step. It can be observed from this simple example that the
order of the equivalent is determined by the occurrence of
time related events such as arrival of the reflected current
wave at the sending bus. As the velocity of propagation of
the line mode is larger than that of the ground mode, one
expects larger order for the latter, since the reflected waves
take longer to arrive at the sending bus.

The value of p determines the number of variables to be
calculated, 2p + 1, and the rank condition of (4). A larger
order implies more variables to be determined and the rank
of (4) should increase accordingly. However, the analysis
of the condition of the matrices in (4) for the line and
ground modes indicates a lower rank for the ground mode.
This is because the corresponding high loss attenuates the
traveling waves and degrades the information associated
with farther nodes. In the following, this problem is further
examined and two approaches for determination of p are
discussed.

One approach to determine a suitable range for the
order of a, and b; utilizes the “length”, in time steps, of the
network, and the number of lumped energy storage
components. The lower limit for the “length” of a network
is defined as the double of the time required for a signal to
arrive from the boundary bus to the farthest node in the
network through the shortest path possible, divided by the
time step. This approach is adequate for radial networks
only. If there are loops in the network, then the order could
be close to the total length of the network. This is equal to
the double of the sum of all transmission line travel times

divided by the time step. This is an upper limit. Usually a
suitable value for the order is between these two limits.

The second approach is based on the rank analysis of
the matrices of (4) via singular value decomposition (SVD)
[20]. The data from i(n) or v(n), used to build 7 or ¥, is
corrupted by round-off noise due to the limited number of
significant digits (usually 6) available in the output format
from transient calculation programs. The effect of noise is
easily noticed using SVD analysis, and a procedure to
determine p based on this information is formulated in the
following. Some remarks are important to be made with
respect to the use of SVD:

e The upper partitions (denoted by the dashed line) of /
and V, Iy and Vy, contribute to the rank of (4) with p
linearly independent rows, regardless of how large p is, due
to the upper triangles filled with zeros. These zero values
account for the initial conditions. If (4) is well-conditioned,
the remaining N—p lines should have other p+1 linearly
independent rows, completing the rank. Therefore, the
information about the rank must be searched in the lower
partitions (/z and V;) of matrices / and V. The upper
partitions should not be used for obtaining p because of
their triangular shape. If p is overestimated, they lead to
erroneous information regarding the intrinsical order of the
system.

e The SVD analysis can be performed on the lower
partitions /. and V7, either separately or together. It reliably
reveals the rank of the partition being used. If the source
used to obtain i(7) and v(n) is a voltage source, one uses the
data from i(n) — matrix I;. In the case of a current source,
one uses the data from v(7) — matrix V;. If a complex
source is used, the SVD analysis must be performed on the
whole lower partition (matrices [y and V7).

o Losses inherent to ground mode highly attenuate the
travelling waves associated with farther nodes. Since losses
for the line mode are not very high, the SVD indicates a
reliable value for p. However, the value of p for the ground
mode indicated by the SVD is not reliable. Despite the
increased travel times, due to the high losses, the SVD
leads to a p smaller than that of the line mode. Therefore, a
value of p for the ground mode is set to be greater than that
obtained for the line mode, by a factor based on the
differences in the travel times. Determination of a, and by
for the ground mode is usually a rank deficient problem.

To determine p for the line mode we calculate the SVD
of I, built for a p much larger than the order assumed for
the external subsystem, for instance equal to half the
number of available data points which is presumably much
higher than the correct order for the system. A suitable
range of values for p is indicated by the indexes of the
singular values which are about 10° ~ 10° times larger than
the smallest singular values (corresponding to the round-off
noise). Usually, the larger the order, up to a certain limit,
the higher the accuracy. A plot of singular values of
partitions /; for the determination of p for both line and
ground modes is presented in Section IV, Fig. 1.

We conclude by emphasizing that the order p we
choose for the realization (2) of an external system must
not be smaller than its intrinsical order. In the
computational problem (4), because both a; and b, appear
as unknowns, we have matrices with 2p+1 columns. Their
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numerical rank is increased accordingly due to their upper
part (as discussed before) and only their lower part
properly reflects the intrinsical rank or order of the
network.

The two-port case can be treated as three single-port
cases attached by a common set of a, coefficients, as the
row blocks of (6) denotes. Thus, we perform the above
described SVD analysis in the partitions /y, /iy and /i
and take the highest of the three values indicated for p as
the order for the two-port equivalent.

D. Stability and passivity requirements

Stability and passivity are inherent characteristics of a
passive network and an equivalent for such a network must
exhibit these characteristics. The stability of a linear system
described by a constant-coefficients difference equation
can be checked by the analysis of its natural modes
corresponding to its zero-input response. The zero-input
response of a system described by (1) is a sequence ix(r7)
that satisfies s,

P
> 4iy(n-k)=0. @)
k=0

As in the case of constant-coefficients differential
equations, (7) is referred to as the homogeneous equation
and iy(n) is the homogeneous solution [16]. We seek a
solution for (7) of the form

i, (n) = const.z". (8)

Substituting (8) in (7) results in the requirement that the
complex numbers z be the roots of the polynomial equation

P
> 4,z =0, ©)
k=0

For stable sequences, the absolute value for each z must be
less than 1. As we use only one set of coefficients related to
the output in the two-port case, instead of a matrix
polynomial in (9) we have a single polynomial. Thus, the
check for stability is the same for both single-port and two-
port cases.

To develop the passivity criterion we specify the
admittance of the equivalent, in terms of the sets of
coefficients, as function of the frequency. We analyse the
single-port case and then extend it to the two-port case.
Consider the equivalent excited by a single frequency
voltage source

v(n) = v(t,) = v(nAl) = v, /O = v, (e7*)" (10)

Using the auxiliary variable z =e/®*', we have

v(n)=v,z". (11)
Similarly, the corresponding current can be expressed as
iny=i_z", (12)

Setting v, = 1, implies i, = y,, the admittance of the
equivalent at frequency . Substituting (11) and (12) in (1)
and rearranging the terms, we obtain

P
Zbkz_"
ym=gm+jdm= £=0 .

S k
1+Zakz

k=1

(13)

2, is the real part of the polynomial fraction in (13). The
criterion for passivity of the equivalent, single-port case, is
g,>0. This must be checked for a reasonable number of
frequencies (typically 1000), in the range from 0 to w/AT?.

In the two-port case, the admittance of the equivalent is
a 2x2 matrix, rather than a scalar:

T =G, +iD,. 14)
YoL1

The elements of Y, are obtained using (13), substituting by
by by, b or by, and the two-port a; set. G, is the real
part of ¥,. To ensure passivity, both eigenvalues of G
must be greater than zero or G, must be positive definite
[14,17,21]. As for the single-port case, this must be
checked for several frequencies.

The procedure presented in this paper does not address
the issues of stability and passivity as constraints imbedded
in the calculation of the equivalent. However, a stable and
passive equivalent is usually obtained if losses are
represented in the network and-a redundancy of around 2 is
observed for (4) or (6).

Yol
Yau

1. SIMULATIONS WITH NON-ZERO INITIAL
CONDITIONS

The discrete nature of the equivalent derived in this work
permits its initialization very easily. From (2), we see that
including initial conditions is just a matter of calculating an
appropriate set of past values of voltages and currents. This
process is especially facilitated if the initialization refers to
the steady state for a given frequency @, (corresponding,
for instance, to 50 Hz or 60 Hz). In this situation, the
voltage and current sequences are related by the value of
the admittance of the equivalent at ®o, Yo, Which is
calculated using (13) or (14), for single-port and two-port
cases, respectively. We exemplify this using the two-port
case.
It is desired to perform a simulation from the steady
state at a given @o, for which the voltages at port I and II
are specified as phasors. The corresponding current phasors
are calculated as:

. Jbo1 7601
Ip1€ =y |Voa®

. ' =l Bor |
‘o,nem’" 3 Vo,ueJ =

The initial conditions for voltages and currents are thus
given by the sequences in (16) and (17), where n = -1, -2,
-3,... ,— p, respectively for the ports I and IL

15

vi(n)=vosin(@onAt + 8oy), i(n)=ipsin(@enAf + dop (16)

v(n)=vopsin(@enAt + o), in(m)=ionsin(@onAt + ¢om) (17)

Naturally, when the equivalents are obtained for each
mode, the voltages and currents used in the initialization
process are modal quantities. Thus, for power frequency
steady state, only the line-mode has non-zero initial
conditions.

IV. ILLUSTRATIVE EXAMPLES

The three-phase network presented in Fig. 1, considered
as the external system, is used to demonstrate the accuracy,
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computational ~ efficiency and limitations of the
equivalencing technique for both single-port and two-port
cases. Non-sparse and sparse equivalents are calculated for
the line and ground modes of the network shown in Fig. 1.
All the transmission lines are assumed to be balanced.

A detailed time-domain electromagnetic transients
simulation model of the test system is developed to serve as
reference for the comparisons of accuracy and
computational efficiency of the equivalent. This model is
also used to generate the voltage and current sequences for
the calculation of the equivalent. Frequency dependent
models [9,10] are used for all lines, and the propagation
functions and characteristic impedances are represented by
ten partial fractions for both line and ground modes. The
partial fractions are obtained using vector fitting [22]. The
routines for (i) obtaining the network equivalent and (i)
performing the electromagnetic transient computations
using the equivalent or the detailed network representation
were developed in Matlab [19].

As a measure of accuracy, the overall fitting error, Forr,
is calculated (using voltages as an example) as

Ferr= "qu - Vfﬂ"/H Vﬁ'": (18)

where the subscripts “eq” and “fir” refer to the sequences
calculated using the equivalent and the full network
representation, respectively. The sparsity of the equivalent
is measured by its “occupancy”, which is defined as the
percentage of non-zero coefficients in the sparse equivalent
compared to the non-sparse equivalent. For the two-port
case, this is done taking into account all the sets of
coefficients at once. The criterion for computational
efficiency is the number of floating point operations (flops)
needed to perform a transient calculation. Instead of time
comparisons, flops are chosen because they do not depend
on the platform or the compiler used.

A. Single-port case

For the single-port case, the external system is the network
(Fig. 1) seen from bus I. The voltage and current sequences
used for the calculation of the equivalent were obtained
from a transient simulation due to a step voltage applied to
bus I using a 20 ps time step. The determination of p uses
the SVD approach. Fig. 2 shows the singular values
obtained from the SVD of I; (built for p = 300) for the line
mode. Several equivalents for the line mode could be
calculated using values of p from 105 to 160 providing
different fitting errors, stability and passivity conditions.
The non-sparse equivalent for the line mode is calculated

. ——-  line-made single-port
oy e line-mode two-port(l)
o ——  line-mode two-port(ll)
VT . ..—-- ground-mode two-port{l)
-5
107 + .
3
L
>
S
§ 10
610 r
107}
0 50 100 150 200 250 300

Index

Fig. 2 — SVD for the determination of p, single-port and two-port
cases (line and ground modes).

using p = 150. It is stable, passive and presents an Fe,
(compared to the current sequence used for its calculation)
of 3.48x107". The sparse equivalent (SNE) is searched
decreasing the spartsity, or, increasing the value of N (the
number of non-zero coefficients in the sets a; and by),
initially set to 10. A stable and passive SNE, with an F.., of
0.0177, is obtained for Ny = 17, which provides an
occupancy of only 11%. For the ground-mode, a stable and
passive non-sparse equivalent, with F,, = 9.30x107°, is
calculated using p = 215. A stable and passive SNE for the
ground mode is also obtained decreasing the sparsity and
resulting in N5 = 23 and F,, = 0.0024 (occupancy of
10.7%).

To further probe the accuracy of the equivalent and its
computational efficiency, an energization of the network at
bus I is examined. The energization is calculated using full
representation and both non-sparse and sparse equivalents.
It is a monopolar switching operation (using a 60 Hz
voltage source and 50 Q resistance) performed at bus I,
phase A, while phase B is short-circuited and phase C is
left open. The results regarding accuracy and
computational efficiency are presented in Table 1. For the
accuracy, voltages on phases A and C, and current on phase
A and B, all at bus I, are compared. Fig. 3 shows the
voltages on phase C calculated using full representation
and the sparse equivalent. The accuracy of the non-sparse
equivalent is not compared because it presents negligible
fitting errors (less than 107°).

Table 1 shows that the SNE has a major impact in the
computational efficiency while the non-sparse equivalent
has not. This is due to the small time step used, which
increases the order of the equivalents. The absence of a

| S0km 120 km | TR study zone in these simulations restricts the computational
5 burden to the calculation of the external system only, thus
(1] (1]
L - TABLE 1:Computational efficiency and accuracy comparisons.
= — Single-port equivalent: computational efficiency:
300+j150.8 Q2 150km Full network Non-sparse SPARSE
representation | equivalent equivalent
Mflops(%): 100% 50.1% 7.8%
Single-port equivalent: accuracy (fitting error, Er)i
400 +[226.2 0 Voltage Voltage Current | Current
L (phase A) (phase C) (phase A) | (phase B)
Fig. 1 — Single line diagram of the three-phase network taken as SPABSE
Vi el SUStetn, equiv.: 0.0021 0.0256 0.0109 0.0487
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1 - Ful representation
2 - Sparse equiv.
——- difference:1-2

Voltage (p.u.)

5 10 15 20 25 30
Time (ms)

Fig. 3 — Voltages at bus L, phase C, due to the energization of the

network presented in Fig. 1 (SNE: single-port).

permitting a direct comparison. The accuracy comparisons
are not affected since the equivalents are properly
integrated, into a transient calculation routine to interact
with the voltage sources. The fitting errors presented by the
SNE, shown in Table 1 and Fig. 3, are acceptable in view
of the computational efficiency provided.

B. Two-port case

The sequences for the calculation of the equivalents were
obtained applying step voltages at buses I and II (Fig. 1),
one at a time, as described in Section IL.A. The values for p
were determined using the SVD approach (Fig. 2). Table 2
shows the characteristics of the equivalents for line and
ground modes regarding order, fitting errors and sparsity.
The non-sparse equivalents for both modes are stable,
passive and present negligible fitting errors (6.9x107° for
the worst case). While both SNEs are stable and present
acceptable fitting errors, only the equivalent for the ground
mode is passive. The passivity of G, (14) for the line mode
SNE was checked for 1000 frequencies resulting in 63
negative eigenvalues. This violation of the passivity
criterion makes the SNE umsable, as it may lead to
instability. To check the two-port SNE behavior, the same
monopolar switching operation used in the single-port case
was performed at port I. The voltages (phase C) resulting
from this energization, calculated using full representation
and the SNE, are shown in Fig. 4. The instability starts to

1 - Full representation
2 - Sparse equiv. (two-port)

ol

TABLE 2: Two-port equivalent characteristics.

Order p (NON-sparse equivalent):
LINE mode: | 150 GROUND mode: | 215
Fitting errors (F.,,) — SPARSE equivalent:
Current seq.: in); iy ifmhn
Line mode: 0.0013 0.0033 0.0039
Ground mode: 0.0040 0.0042 0.0020
Sparsity (Ns):
Coeff. set: ag b[}, bllk b].[lk
N5 (line): 35 29 29 24
N; (ground): 48 40 40 33
Occupancy (%)
LINE mode: | 19.6% | GROUND mode: | 18.8%

be pronounced after around 5 ms. This is a limitation of the
presented method and the authors intend to overcome it by
using a constrained solution of (6) to enforce passivity.

The computational efficiency of two-port equivalents is
about 3 times lower than that of single-port equivalents if
similar order and sparsity are used. This comes from the
fact that the single-port equivalent uses only two sets of
coefficients while the two-port uses six sets. It may turn the
use of two-port SNEs of little advantage and the non-sparse
equivalents of none, unless we deal with simulations from
the steady state, as shown in the following.

The steady state initialization of transient calculation
routines using full representation may not be as easy as it is
for the discrete-time equivalents used in this work. The
initialization of both sparse and non-sparse equivalent has
practically no computational burden if the method
presented in Section III is used. To compare the
computational efficiency provided by the use of
equivalents in simulations with initial conditions, we
conduct a short-circuit transient calculation for the network
of Fig. 1. The network is excited at bus II by a three-phase
voltage source with impedance of 1+15.1 Q. The short-
circuit is performed at bus I, phase B, when the simulation
time is 0.2 s and it is cleared after 10 ms. The 0.2 s is
needed for the simulation using full representation to reach
the steady state. The transient is calculated using full
representation, non-sparse equivalent and the SNE. Table 3
presents the results regarding the computational efficiency
comparisons considering or not the initialization of the
equivalent. These results show that for simulations from
the steady state the use of the equivalents has a major effect
on the computational burden. The efficiency of the
equivalents is increased by a factor of about 8 if the
initialization is used.

Regarding the accuracy comparison, it is done only for
the non-sparse equivalent, as the SNE exhibits instability
problems. The voltages at bus I, phase B, due to the short-
circuit transient calculation, using full representation and

73 the non-sparse equivalent, are shown in Fig. 5. The
2 difference between the two curves is magnified by a factor
> TABLE 3:Computational efficiency comparisons.
Two-port equivalent: computational efficiency:
WITHOUT | Full network | Non-sparse SPARSE
initialization | representation equivalent equivalent
it Miflops(%): 100% 141.8% 39.1%
0 5 Tim;‘%ms] 15 20 WITH Full network | Non-sparse SPARSE
Fig. 4 - Voltages at bus I, phase C, due to the energization of the initialization represer;tahon equivalent equivalent
network presented in Fig. 1 (SNE: two-port). Milops(%): 100% 18.5% 5.1%
[
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Fig. 5 - Voltages at bus I, phase B, due to the short-circuit
transient calculation (NON-sparse quivalent - two-port).

of 20. This small difference is not due to inaccuracy of the
equivalent, but to the fact that the steady state initialization
. of the equivalent is perfect and 0.2 s is not sufficient for the
complete initialization of the full representation.
Nevertheless, the errors are too small, F,, =1.7x107 for
the worst case.

V. CONCLUSIONS

The paper presents a methodology for calculating
sparse network equivalents based on time-domain fitting.
Single-port and two-port equivalents are studied. Criteria
for checking stability and passivity of both equivalents are
formulated. A method for the initialization of the
equivalents is also presented.

The results show the superior computational efficiency
of the sparse equivalent for transient calculations when
compared to either the non-sparse equivalent or the full
network representation. The study results indicate that the
overall fitting error of the sparse equivalent is satisfactory.
The initialization feature of the equivalents further
increases their efficiency.

The presented methodology could not be successfully
applied to obtain passive two-port equivalents. The solution
to this problem will be presented in a sequel to this paper.
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