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Abstract— This paper presents an analytical framework to
represent non-linear and switched devices in efficient har-
monic initialization procedures for the time domain simula-
tion of electromagnetic transients. This modular approach,
associated with the fully analytical modeling of the non-linear
components, allows implementation of several different solu-
tion techniques, ranging from a simple fixed point (Gauss-
Seidel) iteration method to a full NMon-lhphlon proco-
dure.
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I INTRODT.'C.'I']QN
The accurate determination of the initial condition for a

time-domain electromagnetic transients study can be a dif-
ficult-and time-consuming task. In general. this initial con-

- .dition corresponds to a periodic steady state of the system,
" .under pre-defined operating conditions such as loading and

‘topology.

The greatest computational challenge comes from the
presence of non-linear or switched components. In order
10 obtain the periodic steady state of such a system, several
approaches based on time-domain and/or frequency-domain

-modeling of the system have been presented (1]-{7]. A clas-

sification of these methods is presented in Section II.

To solve this problem, it is sound practice to subdivide the
‘system into a linear part (LP). consisting of all conventional
linear components, and a nonlinear part (NLP) formed by
the nonlinear and switched devices.

This division can lead to a modular approach to represent
the NLP, since the current injections of each component can
be analytically obtained from its terminal voltages. As seen
from the LP, these devices are voliage-dependent harmonic
current sources. These currents are then injected into the
LP of the system to chtain an update to the voltages. This
is essentially a fixed-point jteration process with fast con-
vergence if the injected currents are not too large.

This modular approach is adopted in this paper. The
modeling of a simple non-linear component and a switched
device is presented in Section Il

The issues of convergence and robustness of the different
methods are illustrated through two simple example svs-
tems, i.e. A non-linear reactor and a thyristor-controlled
reactor {TCR). These results are presented in Section IV.

II. CLASSIFICATION OF THE METHODS

A simple classification to sort out the methods for obtain-
ing the periodic steady state of a non-linear power svsiem.
based on the nature of the solution. is given in the following.
Table I gives an overview of this classilication,

* on leave of absence fromi TEE/PGMEC. Universidade Federal Fin-
minense. Brazil. e-mait: Jlimagic.uff.nr

7 email: adnm.semivenwutoronto.ci
¢ e-mail: irnvanicecfantoronto.ca

Table I - Classification of the methods

— TIME DOMAIN METHODS
— FREQUENCY DOMAIN METHODS

— HYBRID METHODS

-— Sequential
~— Full current injection
— Non-linear Norton eguivalent

— Simultaneous
— Linear Norton eguivalent
— Complex decoupled Newton-Raphson
— Decoupled Newton-Raphson
~— Newton-Raphson

1. TIME DOMAIN METHODS

This is, perhaps, the simplest approach. One can simply let
the time domain simulation run until steady state is reached.
Its major drawback is the long simulation time required if
less than a perfect initial guess is used, especially if the
system has low damping.

II. FREQUENCY DOMAIN METHODS

This is the classical approach to soive linear systems, where
superposition leads to decoupled frequencies. Modeling of
non-linear components directly in frequency domain can be
quite difficult. Worse than that. these models produce cou-
pling between the frequencies, requiring the simultaneous
solution for all frequencies.

III. HYBRID METHODS

The hybrid methods are usually based on a nodal represen-
tation of the LP of the system. These methods rely on the
frequency domain solution of the LP and use time domain
models {or frequency domain models based on time domain
responses) to deal with the NLP. The nonlinear components
are represented as current injections at their terminal nodes.
These injected currents can be usually modeled as non-linear
functions of the voltages.

For each frequency k. one should solve

. Y =y, (1)

where 1), is the nodal admittance matrix associated with
the LP of the svsten). calculated at frequency hw, 1, is the
vector of nodal voltages and ¢, is the vector of nodal current
injections from the non-linear components.

The periodic steady state of the svsiem is obtained when
{1) is satisfied for everv frequency of interest. The hybrid
methods can le classified according to the approach taken
1o solve the problem:
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IIT.A. Sequential

In this approach, the LP and the NLP are solved alternately.
The LP is solved frequency by frequency and only the NLP
solution has to deal with the frequency coupling.

The harmonic current injections for each non-linear de-
vice in the system are calculated from the knowledge of the
harmonic nodal voltages at the previous solution of the LP.
If the direct calculation of these currents is not feasible, an
iterative procedure may be required.

The harmonic currents for all non-linear devices and inde-

pendent sources should be assembled to obtain the vectors
ij. to be used in the next solution of the LP. The following
procedures can be devised:
TIL.A.1. Full eurrent injection — The nodal current vectors
are directly used in the solution of (1) to obtain new values
for the voltages. This approach is known as fixed-point it-
eration or Gauss method. It requires, at each iteration, the
computation of the terminal currents. for each device in the
NLP. These currents are obtained from the nodal voltages
calculated at the previous iteration.

The implementation of this method is very simple. but its

convergence is greatly afiected by the relative magnitude of
the non-linear current injection. -
IILA.2. Non-linear Norton equivaleni — To improve conver-
gence, the non-linear current injection of each non-linear
device can be written as a sum of a linear term Y@**vje
and a correction term i}“*" as

O DALES Sl (2)

wheren"' is a diagonal admittance matrix built using ap-
proximations for the harmonic admittances of the non-linear
device.

This idea leads to a Norton equivalent, as shown in Figure

1. The harmonic vector i}, %" reflects the non-linearity of the
device.

l"‘!

‘f’1 re e

’ Fi;.'l Harmouic Norton equivalent

The harmonic admittance Y,** can be included in. ¥},
and. therefore. part of the non-linear current injection is
transferred to the LP. This can improve convergence if the
modified non-linear current injection i}, has smaller com-
ponents than 7"

II1.B. Simultaneous

The simultaneous solution of the LP and NLP requires the

simuitaneous solution of (1} for every frequency. This can

be expressed as .
Ye—i(r)=0 (3)

where Y is a block diagonal matrix containing the ), ma-
trices for all frequencies. The vectors v and i are built in a
similar way, conlailling vectors ¢, and ij,. respectively.

The coupling hetween frequencies is mplicit to the non-
linear currents and the harmonic components of these cur-
rents are. in general. function of all the harmonics of the
voltage.

Equation (3) represents a set of non-linear algebraic equa-
tions and the methods availuble for the solution of this prob-
jem are similar to those applied to solve a conventional

power fiow problem. The solution of this problem can be
divided in several categories:

IIL.B.1. Newton-Raphson ~ This is the only linearized
method that can ultimately achieve quadratic convergence.
It requires, on the other hand, the use of (3} in its aug-
mented real form to allow linearization. If the Jacobian
matrix associated with the real form of (3} can be deter-
mined (analytically or numerically). it will lead to a set of
2 x ny, X 1y linear equations due to the coupling between fre-
quencies, where n), is the number of harmonic frequencies
considered and n; is the number of nodes in the system.
I11.B.2. Decoupled Newton-Raphson — The Jacobian matrix
associated with the augmented real form of (3) has frequency
coupling entries that could be disregarded to vield ny sets
of 2 x n, linear equations. This approach can lead to faster
iterations, especially if parallel computing is applied. but
will require more iterations to achieve convergence. when
compared to the full Newton-Raphson method.

111.B.3. Complez decoupled Newton-Raphson ~ The need to
use the augmented real form of (3) arose from the fact that
the linearization of the non-linear models led to general 2x2
linear operators as shown in {4), which cannot be expressed
in terms of complex numbers.

[¢ s]tas] W

__ To use complex numbers, these linear operators should be
restricted to a specific structure:

[5 ][an ] = ermer+ian @

The solution of (3) using complex numbers requires the

use of approximations of (4) in the form shown in (3). This
leads to ny, sets of n, complex linear equations to be solved
at each iteration. The.expected convergence will be largely
influenced by this approximationi and can be poorer than
that achieved with Decoupled Newton-Raphson.
II1.B.{. Linear Norton equivalent — Another simplification
that can be used is the assumption of a fixed linearized Nor-
ton equivalent for the NLP, similar to that shown in Figure
1. In this case. the simplification comes from the use of a
constant set of admittances. completely avoiding the need
for sophisticated linearized models to be updated at each
iteration. .

III. Nor-LINEAR DEVICES

The modeling of the non-linear devices is crucial to the
successful application of the modular approach.

The basic idea is to obtain the currents {outputs) as &
function of the voltages (inputs). To achieve this goal. the
voitages are considered known and are expressed in terms
of their Fourier coefficients as

g, )
vt =2 v}, cos (ht) — v sin (hut) (6)
h=1

The steady state time domain characteristics of tite non-
linear device is used to determine analyviic expressions jur
the currents as a function of the voltages. These time
domain functions are periodic and can he expressed as a
Fourier series. The Fourier coefficients of the currents are
then analvticallv obtained as definite integrals over one pe-
riod.

This section presents two examples of such modeling: a
non-linear reactor and a thyristor-controlled reactor (TCR1.
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A. Non-Linear Reactor
Figure 2 shows a non-linear shunt reactor. The current is
given by
i =K[s)+ o] (7
where ¢ is the magnetic flux and K is a constant. The
terminal voltage is reiated to the flux:
do(t)

vit) =5

8

i
s

wr)

Fig. 2. Non-linear shunt reactor

Assuming that the terminal voltage is given as a Fourier
peries as in (6), the flux can be written as

- = < ‘l_l" O 1:-
e(8) 2I§ﬁm(m)+mm(mu) (9)
Substitution of (9) in (7) leads to the expression of the
mt,inthetimedomain,uaﬁmctionoftheapplied
W.Thkupreuimmnbedhuﬂywﬁmua&tm
serics, converting the powers and the mmitiplications of
trigonometric functions to their harmonic equivalent expres-
sions. In other words. the Fourier coefficients for the current
, -unbedimctlydeterminednndtheyue,ingmd.fune—
tions of the harmonic components of the voltage. This can
be expressed as
: in = i (vf, o)) + il (vist) (10)
wbuov;indu{’mthevectonwiththemd(em)mdimag-
inary (sin) parts of the harmonic coefficients of the terminal
‘voltage, respectively. These harmonic components of the
non-linmreactorcurmtwillbeinjectedintothenetwork
at the terminal node of the device. If the non-linear reactor
ismnneptedwnodek,theharmoniceontﬂbuﬁonofthe
current. at frequency hw, should be added to position k of
the vector iy in (1). T
The augmented real form of (3) can be written as

G -B o [P | o 0

B G o ) |
where Y = G + jB. The vectors v (") and ' (i") contain
the real parts (imaginary parts) of the harmonic components

of all nodal voltages and current injections, respectively.
The linearization of (11) can be written as

G -B} i A Ar'
(g -21-[% s(80)-r

where the matrice=

(03))

ai' o ai o
h=gs L=gm h=ge h=mm 0¥

can be easily obtained from the analytical expressions of the
currents. For the non-linear reactor, these matrices have
non-zero elements.at the positions associated with the ter-
minal nodes (rows and columns}. The vector 7 is the residue
associated with {11 .

B. Thyristor-Controlled Reactor

Figure 3 presents the basic structure of the TCR considered
in this paper. The basic steady state operation of this device
is shown in Figure 4 [8].

w!) N
b R L Et a
— .
i(?)

Fig. 3. Thyristor-controlled reactor
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Fig. 4. TCR time domain characteristics

‘The TCR has non-continuous.current conduction and the
LUrD-ON INSTATLS fony 211d on2 are defined by the firing sig-
nal. obtained here as a delay a with respect to the zero
crossing of the applied voltage:

tm=to+a ()

The turn-off instants Z,7s) and togs2 are defined by the
zero-crossing of the current. During conduction. the follow-
ing differential equation applies:

di

LE+R3=1' 13)

The general solution of (15), considering the voitage ex-
pressed as in (G), is given by
i(t) = Ke~Blt=ten)y

L " {16
+2Zims(lwt—w.)-;—:Siﬂ(hu-'f—;hl )

=
where
Z, = R+ (L) (17)
and
-y Bl .
e = tan (T) (15}

The constant A can be determined from the initial con-
dition (i{l,,1 = 0):
Fi - v l_H
N = —22 =& cos (fuiton = 20) — sin (Bt — 21
h=1 Jh Zh

(19)
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Equations (16)-(19) are valid at both conduction periods
tomi St <tors: and tonz St < tofsa. 1t is easy to obtain
the harmonic components of the TCR current from (16),
both oumerically, using an FFT algorithm, or analytically:

ig =iy + jir (20)

where rosst
i = am f i (t) cos (fwt) dt+
2% Jtom @1)
w17 ) cos (Gwt) dt
sg [ yoos et

and
. W frernt
== i () sin (&wt) di+

27 Jo s

L [t (22)

— i (t)sin (fwt) dt

5 [‘“2 i(t)sin (&wt)
The harmonic components of the TCR current can be ex-

pressed as functions of the harmonic components of voltage
and also of the turn-on and turn-off instants:

[ i;er ] = [ fl-("’!””-tﬂ’td.f) ]
it fa (‘U’, ””’ tony tol!)

lter
T T

where ton = [ tom1 tomz | 80dtogs=[ torn tor2 ] -

These currents are added to the vectors i’ and " in (11) at
the positions associated with the TCR terminal node. The
linearization of (11) has now extra terms, as compared with
(12):

Av

A{[s 2]-[% 2] o |- @)
RV £ P

The matrices J, to J,. are obtained by taking the proper
partial derivatives of (23). It can be proven that incremental
changes in togs have no effect on the harmonic componenis
of the current. This is not valid, though, for changes in ton.
As shown in (14). the turn-on instant is determined by the
zero crossing of a certain reference voltage at to and by the
delay a.

The delay a is usually the output of a closed-loop control
system, controlling voltages and/or currents in the system.
The zero crossing of the reference voltage changes due to
variations in the voltage harmonic contents. The sensitivity
of o to these changes is shown in the Appendix. )

1V. REsuLTS

(23)

A. Erample System 1

Figure 5 depicts a very simple system useful to illustrate
some of the issues associated with the different solution
methods presented in Section II. The magnitude of the non-
linear current was adjusted using different values for the
constant A in (7).

LD}

N
:
BT e

R=001 L=0.1

Fig. 5. Example System 1

Figure 6 shows the steady state voltages and currents. at
the terminal of the non-linear reactor {NLR). for KRy =0.1.
Ky =05 and hx =0.9.

x2 x Ix2
Fig. 6. Example System 1 ~ voltages and currents

The case with K3 = 0.9 shows a peak voltage of 0.8 at
the terminal of the NLR, corresponding roughiy toa voltage
drop of 20% across the LP of the system. This can be consid-
ered an extreme case and the full injection method (IIL.A.1,
in the classification of Section 1I) and the non-linear Nor-
ton equivalent (IT1.A.2) required more than 30 iterations to
satisfy the same convergence criterion that the Full Newton
method (II1.B.1) achieved in 5 iterations. The decoupled
Newton method (II1.B.2) required 16 iterations.

Figu.re7pmentsthecom'ergencepattemofth¢efm
methods, for the intermediate case (K2 = 0.5). The
qusdraticeonwrgmeeoftbefull}:mon method is evi-
dent in this figure, The full injection method and the non-
linear Norton equivalent show aimost identical behaviour.
This denotes that the approximation used for the harmonic
admittances in (2) is not good enough to result in better
COnvergence. In this case, the linear part of the NLR was
represented by a constant inductance L = 1/K. The decou--
pled Newton method shows quite good performance in this
example, which can be viewed as an indication that the fre-
quency coupling produced by the non-linear reactor is not
very strong.

g \
a
£
-
£ \ ,
. " 0 ‘
- 10 \ =
1" A
0 5 10 - 15 20
iteration
= Curment Injaclion —- Non-Linaar Norton
«dr— Full Newton —o— Dacouoied Newton

Fig. 7. Convergence pattern - Example System 1 - A2 = 0.3

Figure 8 shows the behaviour of a system variable if the
time domain initialization (Method 1. in Section 11) is at-
tempted. This graph gives the value of the mismatch of the
non-linear current at the beginning of every cvele during a
time domain simulation. It took more than 100 eveles for
the transients to damp out and for the system 1o get close to
its steady state (£ < 107%). Although the initial condition
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for this simulation was very far away from the steady state,
the convergence to the steady state is linear gnd after 200
cycles the mismatch is still around 10-5.

1

10

0 50 100 150 200
cycle

Fig. 8. Time domain initialization — Kz =05

B. Ezample System 2

Figure 9 presents the second example. in which the NLP now
contains a TCR branch. A resistive load was also included
in the LP.

LG - Ra0O1 Le0Y iy e

| P ' e 2n 00
: I Rt} ™)

- i L0

Fig. 9. Example System 2

Figure 10 shows the steady state voltages and currents,
at.the terminal of the TCR. for &y = 155°, as = 135°,
a3 = 115%and ay = 95°. These results are associated with
fixed firing delays, which is equivalent to disregard the firing
control system.

Fig. 10. Example System 2 - yvoltazes and currenty

Figure 11 presents the convergence pattern for the current
injection {111.A.1). non-linear Norton equivalent (IILA.2).
full Newton (I11.B.1) and decoupled Newton methods. when
applied to this example system with ay = 113%. The Newton
method converges quadratically. requinng few iterations.

The decoupled Newton method shows a behaviour similar to
that achieved with the full current injection method. This
shows that the frequency coupling produced by the TCR
model is quite strong and should be taken into consideration
for faster convergence. In this example the use of the non-
jinear Norton Equivalent leads to much better performance
than the current injection. For the TCR the harmonic ad-
mittances were obtained considering a constant equivalent
inductance given by {2

{25)

mismatch

w*
0 5 10 15 20
iteration
—ir—Full Newton —a— Decoupied Newion

Fig. 11. Wpttm—zxamphs_vmﬁ-csns’

V. CONCLUSIONS

The paper presented an analytical framework for the mod-
elingofnon-linearmdsﬁtqmddwieuthatn']lmdthe
modular implementation of different methods to obtain the
periodic steady state of the system. The approach was ex-
emplified by the modeling of two devices: a non-linear reac-
tor and a thyristor reactor.

Two simmple example systems were used to illustrate the
convergence and robustness characteristics of these meth-
ods. The analytical models aliowed the implementation of a
full Newton-Raphson method and fast (quadratic) and ro-
bust convergence was obtained in both studied cases. The-
resuits should stimulate the development of new analytical
models and the extension of this approach to iarge systems.
The sparsity of the Jacobian matrices associated with the
non-linear devices can be exploited to yield very efiicient
implementations. -
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APPENDIX — SENSITIVITY OF oy

Civen a voltage, expressed in its harmonic components
as (6), its zero crossing occurs at v (fp) = 0. The total
derivative of the expression above. calculated at ¢ = o, is
given by

nh Th
23" cos (husto) Avy, —2 ) sin (hwto) Avg—
h=1 h=1

th -
~2" hw (v}, sin (fuoto) + v} cos (Awto)] At = 0
h=1

The expression of Aty can be written, in vector form, as
1
Ato= ¢ [(F Ay + J"Av")

where J' and J” are row vectors. Av' and Az" are vectors
containing ll the harmonic components Avy, and Avy. The
scalar S is the derivative of ©(t) calculated at fp.
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