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Abstract - This paper is concerned with a new approach
for travelling wave distance protection, based on pattern
recognition with principal component analysis (PCA), to
be used for transmission line ultra-high speed protection.
The proposed approach explores the possibility to
characterize the wave front shape for internal and
external faults of the protected transmission line. In this
case, a PCA with neural networks is proposed as feature
extractor to implement the pattern recognition process.
The approach was proven with current and voltage
samples from a three-phase 230 kV power system, which
was simulated using the Electro-Magnetic Transients in
DC program (EMTDC). The results show the feasibility
to implement an algorithm for transmission line ultra-
high speed protection.
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I. INTRODUCTION

Power system protection has traditionally relied on the
measurement of power frequency components for the
detection of faults. In conventional protection schemes, the
signals of high frequency introduced by a fault are considered
as interference and are filtered out [1]. However, these high
frequency components contain extensive information about
the fault type, location, direction and sustain time. In fact, the
high frequency transient signals generated by a fault contain
more information about the fault than power frequency
signals [2,3].

In ultra-high-voltage systems, in order to improve the
transient stability, high-speed fault clearance is always
desired. The post fault voltage and current are initially
dominated by electromagnetic travelling waves. Based on the
analysis of these transient state signals, the travelling wave-
based protective relays can detect and locate the fault within
several milliseconds after the fault. Due the development of
new generation fibre-optic voltage and current measuring
systems, the travelling wave protection will have much wider
application in the near future [1,4].

The basic principle of the travelling wave distance
protection is to measure the time interval between the arrival
of an incident wave toward the fault point and that of the
corresponding wave reflected from it. Most of the present
schemes use the correlation function method to recognize the
wave front returning from the fault [5,6]. This is the radar
principle. Most  recently, some different techniques have
been used to improve the results obtain by the correlation
function, as wavelets [7], neural networks [8] and pattern
recognition methods [9]. However, these new approaches use

the same concept to recognize the second wave front
returning from the fault. The common characteristic of these
algorithms is that they have at least an operation time of 3-,
where - is the travel time between the relay and the fault
point.

This paper describes a new approach for travelling wave
distance protection; the proposed approach explores the
possibility to characterize the wave front behavior for internal
and external faults of the protected transmission line using the
first wave from the fault. A PCA algorithm with neural
networks extracts the features from the relaying signals (S1 or
S2) in order to implement a pattern recognition process in a
2D space called feature space. All information is normalized
to have zero mean and unity standard deviation. The
representation of the original relaying signals in the feature
space show a linearly separable structure, and it could be
solved by any classification technique. It allows to
discriminate between internal and external faults with an
operation time of -. Finally, an algorithm is proposed to
implement this function in real time for transmission line
protection.

II. THEORY OF TRAVELLING WAVE PROTECTION

When a fault occurs in the transmission line, by virtue of
the superposition theorem, the fault injected components vf

and i f can be acquired by subtraction of the steady-state
components from the post fault signals (incremental signals)
[6]. For distributed parameter model representation of a
transmission line, the fault injected components vf and i f can
be expressed in terms of a forward and backward travelling
wave:

(1)

(2)

where c and Z0 are the surge velocity and line characteristic
impedance, respectively, and x is the distance that a travelling
wave travels from the fault point.

The forward and backward travelling waves S1 and S2

used in the travelling wave protection are defined as follow:

(3)

(4)

S1(t) and S2(t) travel along the transmission line in opposite
directions. When they hit a discontinuity, part of it will be
reflected, and a part will pass to other sections of the system.

The principle of the travelling wave protection can be
illustrated by the power system shown in Fig. 1. When a fault



Fig. 1. Principle of the travelling wave protection.

occurs at a position that is Df km away from the relay,
travelling waves would be generated and propagate along the
line. When the backward travelling wave V1 arrives at the
source G1 behind the relay, reflection would occur. The
reflected wave Vr1 would return along the line toward the
fault point. At that point, part of it would be reflected, and
part of it would be transmitted, if the fault resistence is not
zero. The reflected wave Vr2 would return to busbar 1 after
some time.

If we can get the time interval t0, between the arrival of
Vr1 and that of the backward wave Vr2, then Df can be
acquired from t0 by:

(5)

Hence the identification of the signal Vr2 becomes the key
problem of travelling wave protection. The correlation
function technique is always used to fulfil it [5,6]. For three-
phase transmission lines, the mutual elements of the surge
impedance matrix make travelling wave couple across the
phases. To simplify the calculations, the modal analysis
method is always adopted to de-couple the phase signals into
three independent modal components, including one earth
mode and two aerial modes. These modes have different
velocity and attenuation and hence lead to dispersion effects
on wave fronts describe by phase components. For fully
transposed system, the two aerial modes have the same
characteristic impedance and velocity. The modal
transformation can be expressed by [6]:

(6)

(7)

where �v(t) and �i(t) are the incremental phase voltages and
�vm (t) and �im (t) are the corresponding modal voltage and
current. S-1 and Q-1 are the transformation matrices. Three of
the constant modal transformation matrices for perfectly
transposed lines are:

Clark transformation:

(8)

Wedepohl transformation:

(9)

Karrenbauer transformation:

(10)

However, the performance of the correlation function
method depends on the fault resistence, the system
configuration and the mode type [9]. Thus, it is necessary to
modify this method for more reliable application.

The proposed approach characterizes the wave front
behavior for internal and external faults of the protected
transmission line using the first wave from the fault (V1 in
Fig. 1). A PCA algorithm with neural networks extracts the
features from the relaying signal S1 in order to implement a
pattern recognition process.

III. PRINCIPAL COMPONENT ANALYSIS

The PCA is a statistical technique falling under the
general title of factor analysis [10]. The purpose of PCA is to
identify the dependence structure behind a multivariable
stochastic observation in order to obtain a compact
description of it. When there is nonzero correlation between
the observed variables the dimensionality, n, of the data space
(number of observed variables) does not represent the
number of independent variables, m, that are really needed to
describe the data. We may liken m to the number representing
the degrees of freedom of a physical system. In the statistical
context the number n is called the superficial dimensionality
of the data, whereas m is called the intrinsic dimensionality
of the data. The stronger the correlation between the observed
variables, the smaller the number of independent variables
that can adequately describe them.

The n observed variables are thus represented as functions
of m latent variables called factors, where m<n and often
m<<n. The simpler the mathematical form of the
representation functions the more economical is the
description of the dependence structure between variables.
Traditional PCA is associated with linear transformations,
which are the simplest and most mathematically tractable
function forms for representation. The factor variables are
also called features of the multivariate random signal, and the
vector they form is a member of the features space.

The usual objective of the analysis is to see if the first few
components account for most of the variation in the original
data. If they do, then it is argued that the effective
dimensionality of the problem is less than n. In other words,



Fig. 2. Geometrical interpretation of the principal
component subspaces.

if some of the original variables are highly correlated, they
are effectively the same thing and there may be near-linear
constraints on the variables. In this case it is hoped that the
first few components will be intuitively meaningful, will help
us understand the data better, and will be useful in subsequent
analysis where we can operate with a smaller number of
variables. PCA transforms a set of correlated variables to a
new set of uncorrelated variables.

Suppose X T=[ x1, ....., xn ] is a n-dimensional random
variable with mean � and covariance matrix ((. A new set of
variables y1, y2, ...., yn, which are uncorrelated, can be
represented as a linear combination of the xi, so that:

yj = a1j x1 + a2j x2 + . . . . . + anj xn = aj
T X (11)

where  aj
T = [ a1j  a2j . . . . .  anj ] is the vector of principal

components. We can prove that the jth principal component
is the eigenvector associated with the jth largest eigenvalue
of (( [11]. It is common to calculate the principal components
of a set of variables after they have been standardized to have
a unit variance. This mean that one is effectively finding the
principal components from the correlation matrix R rather
than from the covariance matrix. The mathematical derivation
is the same, and the principal components are the
eigenvectors of R. However, it is important to realize that the
eigenvalues and eigenvectors of R will generally not be the
same as those of ((.

In our case, a n-dimensional vector X=[x1 x2 .... xn ]
T is

formed with samples of the travelling wave S1.

Fig. 2 shows a geometrical interpretation of the principal
component subspace; based on the variance criterion the
principal component should be the one where the signal has
more energy; the least principal direction is the one with the
least energy. If the signal is, zero mean that the maximum
energy direction is also the direction of maximum spread or,
in information theory, the direction that contains the most
information of the signal (assuming it is Gaussian).

IV. PCA NEURAL NETWORK

There are two techniques to calculate the principal
components: the batch PCA methods and the neural PCA
models. Batch methods are used to process finite sets of data.
Because of storage consideration batch methods are preferred

when relatively few data are to be processed relatively few
times. Adaptive methods (neural networks), on the other
hand, are preferred with arbitrarily long or infinite sets of
data to be processed. Such methods require less memory for
data storage, since intermediate matrices are not explicitly
formed. In addition, adaptive methods with constant step-size
parameters that do not tend to 0 as k��, can track gradual
changes in the optimal solution rather inexpensively
compared to the batch models. In general, the interest for
adaptive techniques arises when R is not known.

There are different models of PCA neural networks,
namely Oja’s model, Földiák’s model, the GHA model, the
APEX model, Rubner’s model, etc. For our problem, we will
use the GHA model [11].

V. THE GENERALIZED HEBBIAN ALGORITHM

This algorithm proposed by Sanger [11] is capable to
extract all the principal components from a data set. The
model has m output neurons y1,.....,ym and n inputs x1,.....,xn.
There are only feedforward  connections between input and
output and the output is a linear function of the input:

yi = wi
T x

The updating equations for neuron i (i=1,....., m) are:

(12)

where Wi = [ wi1 wi2 ..... win ]
T. The model extracts the first m

principal normalized eigenvectors of R under the following
assumptions:

A. The input sequence {xi}, is at least wide-sense stationary
with autocorrelation matrix R, whose eigenvalues are
positive, arranged in descending order, and where the m
largest eigenvalues are distinct: �1 >...> �m � �m+1 �...�
�n > 0.

B. The step-size parameter sequence �k is such that

This assumption will be useful for showing the asymptotic
convergence of the algorithm. We can prove that lim(tÚ�)

w1=±e1, lim(tÚ�) w2=±e2, ....., lim(tÚ�) wm=±em, where e1, e2,....,
em are the eigenvectors of R. Using a more rigorous approach,
Hornik and Kuan [11] have shown that the only
asymptotically stable equilibria of GHA are the points W=[w1

,..,wm ]T=  [±e1 ,.., ±em]T while all other equilibria are
unstable. The network implementation of this local GHA rule
is shown in Fig. 3.

Once the process has finished, the matrix wi = [ wi1 wi2 .....
win ]

T represent the n principal components of the data storage
in the matrix X. Making

Y = W T X (13)



Fig. 3. The network model for the local GHA rule.

Fig. 4. Three-phase 230 kV power system.

we obtain the projection of the original data on the subspace
of the principal components. Suppose we have a (50x10)
matrix X (50 samples of 10 variables in column format); it
can be represented as a group of 10 points (or vectors) on a
50-dimension space. If we apply the GHA rule describe
above for n=2 (to calculate the first two principal components
from X), we could represent the same 10 points in a two-
dimension space (W is (50x2) and Y is (2x10)).

VI. PCA APPLICATION TO THE TRAVELLING
WAVE DISTANCE PROTECTION

The principal idea to use the PCA is carried out a pattern
recognition process to discriminate between internal and
external faults using the basic features extracted from the first
wave that arrive to the relay. We used the EMTDC program
[12] to simulate the three-phase 230 kV power system shown
in Fig. 4 and characterize the first wave from the fault.
Details of the transmission lines used in this study are
contained in the appendix. A horizontal line configuration
was chosen.

For the present study, the Wedepohl transformation
matrix was selected with mode 2 (aerial mode), and the n-
dimensional vector X=[x1  x2 .... xn]

T is formed with samples
of the travelling wave S1 using a simulation time step of
1�sec. In order to consider the first wave front from the fault,
we decide to use 31 samples of S1 for distinct fault points and
inception time with respect to the 60 Hz voltage signal, with
5 samples before and 26 after the fault inception.

In this case, 31 samples represent 31 �sec, which is
smaller time that the travel time along the transmission lines
(0.338 ms for L1 and 0.341 ms for L2). The purpose is to
avoid the effect of the continuos reflection process  present in
the line ends. The fault conditions simulated were:

Internal faults: 10 to 90 and 95 % for 4 to 19 ms.
External faults: 5 and 10 to 90 % for 4 to 19 ms.

All 320 faults were solid three-phase to ground (Rf = 0).
So, we have an input matrix X with 31 rows (samples of S1)
and 320 columns (fault conditions). 

It is important to realize that the principal components of
a set of variables depend critically upon the scales used to
measure the variables. The practical outcome of the above
result is that principal components are generally changed by
scaling and that they are therefore not a unique characteristic
of the data. An option is use the standard deviation for each
variable to scale it. This ensures that all variables are scaled
to have a unit variance and so in some sense have equal
importance. This scaling procedure is still arbitrary to some
extent, is data dependent and avoids rather than solves the
scaling problem. One of this preprocessing methods [11]
normalizes the input so that they have zero mean and unity
standard deviation, as:

(14)

This process generates two new vectors which contain the
mean and standard deviation of the original inputs. Once the
network has been trained, these vectors should be used to
transform any future inputs.

Using the GHA algorithm, we calculate the two first
principal components to obtain a two-dimensional
representation of the original data using (13). The results of
this process are shown in Fig. 5 in two dimensions, where +
are the faults in L1 and *  are the faults in L2. We can see that
principal components convert the original 31-dimension
vectors in 2-dimension vectors, but there is not a specific
feature that allows to implement a pattern recognition
process.

The result shows in the Fig. 5 indicate a strong effect of
the fault condition on the principal components. However, an
analysis of this result shows that exist a specific behavior
with respect to the fault inception time. So, we repeat the
process for all faults with the same inception time
independently its position; in other words, we obtained 16
pairs of principal component for each inception time from 4
to 19 ms. These results are shown in Fig. 6. 

We can see that neural network extract the principal
features from the travelling wave S1, let it know a special data
structure, which could be solved by any classification
technique, as statistical, neural network, fuzzy logic, etc.
However, it is necessary to test if this behavior is independent



Fig. 8. Fault conditions (26) in the PCA subspace.

Fig. 6. Fault conditions for the same inception time
represent in the PCA subspace.

Fig. 5. Fault conditions in the PCA subspace. Fig. 7. Discrimination between internal and external
faults using the PCA.

of the fault position, either internal and external faults. With
this purpose, the next six faults were simulated:

For an inception time of 8 ms:
6 Fault in L1 at 82 and 91 km from relay (��).
6 Fault in L2 at 8 and 15 km from transmission lines

union (��).
For an inception time of 8.4 ms:

6 Fault in L1 at 85 km from relay (��).
For an inception time of 7.8 ms:

6 Fault in L2 at 20 km from transmission lines union (��).

These six faults were not being considerate in the
principal components extract process and include two faults
did not occur at 8 ms, but nearly it. Fig. 7 describes how the
PCA differentiates between internal and external faults using
these six faults as an example. The first two-graphics show
the 31-samples of the travelling wave S1 for each fault, before
and after the scaling process. Once these signals are
normalized, it is possible to observe some differences
between the waveforms for either internal and external faults.
The principal features of these differences were captured in
the PCA vectors during the neural network training. After

that, the normalized signals are represented in the principal
component subspace, where those differences are amplified,
showing that the final structure of the fault conditions in 2D
is linearly separable (third graphic); it allows to use any
classification technique. Fig. 8 show all 26 fault conditions in
the PCA subspace, where the marks + and *  correspond to
the original 20 patterns shown in Fig. 6 for faults in L1 and
L2 respectively, with an inception time of 8 ms.

VII. ALGORITHM

The results describe above indicate that is possible to
implement an algorithm to protect all the transmission line
using 16 pairs of principal components for distinct fault
inception times on a 60 Hz cycle. The diagram blocks in Fig.
9 suggest the following logic: using a 31-data window, the S1

signal is formed continually apply a modal transformation;
when a fault occurs, the inception time could be determinate
approximately using the transition from S1=0 to S1g0 (fault
detector algorithm used in overcurrent digital relays [1]).
Once the inception time is known, the algorithm selects the
corresponding transformation vectors (previously stored) and



Fig. 9. Algorithm.

Horizontal line configuration.

converts the original data to the principal component
subspace to carry out a pattern recognition process and
decide if the fault is internal or external of the protected
transmission line.

Although the results obtained are good, it is necessary to
show the feasibility of this kind of algorithm, and to study the
effect of the power system configuration and the transmission
line impedances in the principal components extraction
process as the next steps of this approach.

VIII. CONCLUSIONS

The basic principle of the travelling wave distance
protection is to measure the time interval between the arrival
of an incident wave toward the fault point and that of the
corresponding wave reflected from it. The correlation
function, wavelets, neural networks and pattern recognition
methods have been used to solve this problem.

The proposed approach characterizes the wave front
behavior for internal and external faults of the protected
transmission line using the first wave from the fault. A PCA
algorithm with neural networks extracts the features from the
relaying signal S1 in order to implement a pattern recognition
process. It will allow to discriminate between internal and
external faults with an operation time of -, instead 3- as in
the previous methods.

The final structure of the fault conditions in the PCA
subspace is linearly separable for all faults with the same
inception time, independently of its position. So, any
classification technique could be used to discriminate
between internal and external faults. Finally, an algorithm is
proposed to carry out this function in real time for
transmission line protection.
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XI. APPENDIX

Line 1: two conductors per phase, r=0.01 m, RDC=0.03206
ohms/km, Z0=313.15 ohms, -=0.338 ms.
Line 2: one conductor per phase, r=0.02034 m, RDC=0.03206
ohms/km, Z0=391.77 ohms, -=0.341 ms.

Ground resistivity: 100.0 ohm-m.
Relative ground permeability: 1.0
Shunt conductance: 1.0e-10 mhos/m.


