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Abstract — The evaluation of the lightning performance of
overhead lines is generally based om a statistical
calculation, due to the random nature of the lightning
phenomenon. This task can be very long if sophisticated
algorithms are used for calculating lightning
overvoltages. The application of a neural network can
shorten the flashover rate calculation. This paper
summarizes the work made to analyze the lightning
performance of overhead distribution lines using neural
networks. The document includes a discussion on the
advantages and limitations of the proposed approach,
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L INTRODUCTION

One of the main difficulties presented in the evaluation
of the lightning performance of electric equipment is the
lightning characterization, due to the random nature of this
phenomenon. In addition, actual lightning data are scarce,
and its random nature forces to camry out statistical
analyses.

The Monte Carlo method is a widely used approach in
statistical analysis of power system overvoltages. The
application of this method to the statistical analysis of
lightning overvoltages on overhead distribution lines is

usually aimed at determining the lightning flashover rate. It

can be a hard and long task if accurate and sophisticated
algorithms are used for €alculating lightning overvoltages.

In general, it is for the calculation of overvoltages
induced by discharges to ground when the task can be very
complex. An approximation based on a neural network
could reduce this complexity and the calculation time.

The approach proposed in this paper can be
summarized as follows. A sequence of lightning strokes is
randomly generated; the overvoltage originated by each
stroke on a distribution line is then calculated. This
information is used to train a neural network, whose
validation is performed by using a mew sequence of
liguning strokes. The following sections present a
summary of the study addressed to obtain the lightning
flashover rate of overhead distribution lines using a neural
network.

IL ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN), hereinafter also
named as neural network, is a parallel distributed processor
inspired by biological models [1] — [3]. ANNs can be used
to solve problems that have proved to be difficult with

conventional algorithms. The basic unit of an ANN is the
neuron. A neuron model has a set of inputs that are
weighted and combined between them to generate the total
input, see Fig. 1. A transfer function determines the state of
activation or the output signal of the neuron from the total
input and the previous state of activation. The output signal
is sent to other units of the network through unidirectional
communication channels.

A neural network will be able to carry out a task by an
adequate selection of the architecture, its processing units
and the learning process. In general, the architecture may
consists of three parts, the input layer, the output layer, and
one or several hidden layers. The learning process allows
neural networks to modify its weights in response to an
input information. The changes produced during this
process are reduced to destruction, modification and
creation of connections between neurons; this process
finishes when the values of the weights remain constant.

An important aspect is the selection of the criteria that
must be followed to change the weights of the connections.
These criteria determine what it is known as learning rule.
In general, it is possible to consider two types of rules :
supervised and mnon-supervised learning. The main
difference between both types lies in-the existence or not
of an external agent (supervisor) that takes over the
training process of the network. The most convenient
learning rule for a specific neural-network is intimately
related to its architecture.

The aim of this work is to develop neural networks that
could calculate the lightning flashover rate of overhead
distribution lines. This goal will be achieved by using
several algorithms to train the neural networks. At the end
they should be capable of reproducing the same results that
the original algorithms. To carry out this work a feedforward
multilayer network based on the back-propagation model
has been considered, see Fig. 2.

The backpropagation algorithm is based on an iterative
process; during a training session two patterns, input and
target, are presented to the metwork. The input pattern
produce output patterns at each neuron of each layer. An
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Fig. 1. Inputs and outputs of a neuron.
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Fig.2. Feedforward multilayer architecture.

error signal is obtained from the difference between the
calculated and the target outputs, the value of this error is
minimized by adjusting the weights. The speed of this
process will depend on several factors, such as the learning
rule, the transfer function of neurons or the initialization of
the network [1] - [3].

IIL. LIGHTNING OVERVOLTAGES ON
OVERHEAD LINES

The calculation of the overvoltage originated by a
stroke is based on a two-stage procedure. First, it is
determined whether a discharge hits a line or ground, using
the electrogeometric model [4]. Then the overvoltage is
calculated using a different algorithm for each type of
discharge. A summary of the algorithms used to calculate
lightning overvoltages and train the neural network are
presented in the subsequent sections.

3.1 Strokes to phase conductors

The maximum voltage originated by a stroke that hits a
phase conductor can be approximated by the following
expression

V=Z_-1/2 (4]
where I is the peak current and Z. the wave impedance of
the conductor. The value of the wave impedance is
obtained as follows

z, =60-tu[2rh°J @

being h, and r. the height and the radius of the conductor,
respectively.

3.2 Strokes to ground

Induced overvoltages in a phase conductor due to
nearby strokes will be calculated using two different
approaches.

a) Rusck’s method

The maximum voltage induced in the point closest to
the stroke is given by [5]

h
E.‘ll_. 1+_1_X__.__1___ 3)

]

V=
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where y is the closest distance between the stroke and the
line, I is the peak current, h is the mean height of the
conductor, v is the return stroke velocity, ¢ is the velocity
of light in free space, and Zo = 30 Q.

Using this procedure, only the calculation of the
overvoltage induced on the highest conductor is needed.

When the line is shielded the voltage induced in a phase
conductor is computed by using a shielding factor or
protective ratio

V =pr-V @

being V the voltage induced when there is no shield wire,
its value is computed according to (3).

If the shield wire is grounded to a resistance to ground
R, the protective ratio is given by [7]

W zl'-c
B T IR ©)

where h,, is the shield wire height, h; is the phase
conductor height, Z,, is the wave impedance of the shield
wire, and Z,, is the mutual impedance between the shield
wire and the conductor. Both impedances are calculated as

follows
T =601n[—2:""} ©

- 601nl Pes
z"-c_wln(de;') (7)

being 1, the radius of the shield wire, Do, the distance
between the conductor and the image of the shield wire,
and d, . the distance between the conductor and the shield
wire.

b) Chowdhuri’s method

It is a more sophisticated method based on a multi-
conductor representation of an overhead line. The voltage
induced in the j-th conductor of a n-conductor line is
obtained from an equation having the following form

Vi =Vy (Nchz) ®
where Vj, is the voltage induced in the same conductor in
the absence of the other conductors, M; is a factor that
depends on the geometrical configuration of the line, and ¢
is the speed of light [6] - [8]. The above equation has been
used to obtain the voltage induced by a rectangular return
stroke function [8]. The induced voltage for any arbitrary
waveshape of the return stroke can then be computed by
applying the Duhamel’s integral.

The same approach can be used to obtain voltages
induced in a shielded line, by changing only the calculation
of coefficients M; [7].

IPST 2001 International Conference on Power Systems Transients — June 24 — 28, 2001 — Rio de Janeiro, Brazil

638



3.3 Strokes to shield wires

The phase-to-ground voltage across the insulation of a
tower is calculated from the following equation [5]
V=V,-(1-CF) (€)
being CF the coupling factor between the conductor and
the shield wire, and V, the tower top voltage. This voltage
can be deduced from the following expression [5]

v, =% t-[zl _ Zwl(l_‘:N)]
Q:w“)_kﬁii

(-of 1-o

__2R{Z (z-r,)
¥ (z+R,) (Z+R,)
R,Z
Z+R;
(2-R;) (Z-R,)
= ‘ g 13
= Z+r)@+R,) 52
beingIthepmkcunentoftheremmsn'oke;R;the ground
resistance of the pole struck, R, the ground resistance of
the adjacent pole, T the travel time along the span, N=t/2t
the largest value that the wave number can reach, and Z =

Z,/2. This equation is solved at t =2 ps [51.
The coupling factor is calculated as follows

Z
CF = Zm—< 14
7 (14

10
+I -:Zwl:

where

(11)

Z = (12)

IV. LIGHTNING PARAMETERS

It is generally assumed that the probability density
function of a lightning variable is given by a log-normal
distribution [9]

—3\2
3 s i _exp{_l[lnx-lnx)} as)
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being X and Oy the mean value and the standard deviation
of the logarithm of the variable. When two variables are
involved, this function has the following form

In X
exp{-p{ x/x lny!y]}
Omx Ghy
(16)
A fl -p?
where p is the coefficient of correlation. If the variables are
assumed independently distributed then p = 0, and
p(X,y) =p(X)-p(y) an
These functions are related to the first stroke, which
usually presents the highest peak value.
The cumulative probability of the current peak, L
exceeding a given value, i, is derived from p(I), and
approximated by the following equation [5]

G N
P2 h) = LGB

p(x,y) = p(X)-p()

(18)

Overvoltages induced by nearby strokes to ground can
be a serious problem for lines with low insulation levels,
being the magnitude of these overvoltages a function of the
velocity of return strokes. Therefore the velocity is another
significant parameter to be included in the study. However,
experimental data for the return stroke velocity are scarce.
In addition, this parameter may have a geographical
dependence, and the characteristics of triggered lightning
may be different from those of natural lightning [10].

A relationship between the current and the velocity of
the return stroke has been proposed with the following
general form

Cc

v= 19

l+E
I

where v is the velocity of the return stroke, W is a constant,
and I is the peak current. This expression can be used to
obtain the so-called striking distance that is the basis of the
electrogeometric model [4].

V. ANN APPLICATION TO THE CALCULATION
OF LIGHTNING OVERVOLTAGES

5.1 Introduction

The goal is to develop a neural network architecture
that could calculate the voltages originated by each type of
discharge. Although two different algorithms have been
used for the calculation of induced overvoltages during the
lwningprooess,theinformaﬁontobeprodumdbyall
neural networks is the same, that is the output pattern has
two values: the type of stroke for unshielded lines (direct
to a phase, indirect) or for shielded lines (direct to a phase,
direct to a shield wire, indirect), and the lightning
overvoltage. o

As for the input patterns, it is obVvious that they depend
on the overvoltage calculation algorithm, but three types of
variables can be distinguished in all the cases : lightning
stroke characteristics, stroke location, and line geometry.
The following input variables were chosen in this work
o the peak current, the return stroke velocity, the closest

distance from the stroke to the line, and the height of

the line, when the Rusck’s algorithm is used with
unshielded lines

° thepwkcmrent,thetimetocrmt,therennnsn'oke
velocity, the closest distance from the stroke to the line,
the distances between conductors and the height of
each conductor, when the Chowdhuri’s method is used
with unshielded lines

e the peak current, the return stroke velocity, the closest
distance from the stroke to the line, the distances
between conductors, the height of each conductor, the
height of the shield wire, and the ground resistance,
when the Rusck’s method is used with shielded lines

o the peak current, the time to crest, the return stroke
velocity, the closest distance from the stroke to the line,
the -distances between conductors, the height of each
conductor, the height of the shield wire, and the ground
resistance, when the Chowdhuri’s method is used with
shielded lines.
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Although phase conductor and shield wire radii are
parameters involved in overvoltage calculations, they were
not included in any input pattern, and all neural networks
were trained using the same values, 1, = 5 mm and 1y, = 2.5
mm, for all distribution lines. In addition, the height of the
cloud charge center was kept constant, h = 3 km, when the
Chowdhuri’s method was used.

5.2 Unshielded lines

Initially, it-was decided to consider an architecture with
at least one hidden layer, use tan-sigmoidal transfer
functions for the hidden layers, lineal transfer functions for
the output layer, and only the Rusck’s algorithm for
training. The input patterns were generated by assuming that
e the peak value and the time to crest of a lightning stroke

had a joint probability density function according to (16),

with p=0
o the return-stroke velocity had a uniform distribution,

ranging between 30000 and 150000 km/s
o the probability density function of the distance from the
stroke location to the line had a uniform distribution and

varied between 0 and 500 m.

Five different heights of the line (5, 8, 11, 14 and 17 m)
were considered. Because of the great differences between
overvoltages originated by direct and indirect strokes, all
calculations were performed with normalized input and
output patterns. 500 input patterns per height were
randomly generated. After some adjustments the errors
obtained by the stroke classifier and the overvoltage
calculator were smaller than 1% and 2% respectively. The
architecture of the neural network was that shown in Fig.
3, it has two hidden layers with 14 and 12 neurons
respectively.

The same architecture was later trained using the
Chowdhuri’s method and 2800 input patterns generated in
a similar way. This architecture did prove to be again
acceptable, being errors obtained with the stroke classifier
and the overvoltage miculator smaller than 1% and 2%

respectively. *

5.3 Shielded lines
The architecture developed during the training of
O

t (o/1)

v (k)

Fig. 3. Neural network architecture — Rusck’s algorithm.

unshielded lines was also used for shielded lines. However,

two additional input patterns were added,

e the ground resistance, for which three constant values
were used with each line configuration, 10 €, 40 Q and
70Q

o the height of the shield wire, for which two different
values were used with each line configuration.

The architecture of the neural network was trained
using 8640 input patterns with both methods. Its
performance was acceptable again, being errors obtained
by the stroke classifier and the overvoltage calculator
smaller than 5% with both methods.

VL STATISTICAL ANALYSIS

The neural network architectures were validated by
performing statistical analysis, whose results were
compared to those deduced by using the original training
algorithms; the most important results are summarized in
this section.

Up to 5000 events were randomly created by assuming
that the point of impact was uniformly distributed, while the
joint probability density function of the current peak and the
time to crest of each stroke was that presented in (17). As for
the velocity of the return strokes two alternatives were
considered
e velocities were uniformly distributed, ranging from

30000 to 150000 km/s
e velocities were related to the maximum currents of the

strokes according to (19), assuming that the value of

the coefficient W was ranging from 50 to 500.

Tables I and II show the flashover rates calculated using
both the original algorithms and the neural networks, and
assuming uniformly distributed retumn stroke velocities [11].
All calculations were performed. by ignoring the power
frequency voltage. Flashovers originated by different types
of discharges are presented separately, so it is possible to
distinguish the performance of the neural networks very
easily. It is evident that the differences between values
obtained from algorithms and neural networks are very
small for direct strokes or backflashovers, and in general the
total error can be acceptable.

A very different performance was observed when the
velocity of a stroke is deduced from its maximum current
and using the neural networks trained assuming a uniform
distribution of this velocity. In this case, the differences
were very significant for some values of W. This
performance can be justified by observing the resulting
distribution of velocities for each coefficient W, as shown in
Fig. 4. Only when velocities were ranging between 30000
and 150000 knv/s, results obtained from the neural networks
did match those from the algorithms, showing in this way
the importance of the patterns used during the training
process. For this reason, the neural networks were trained
again, using the same architecture but considering this time
the return stroke velocity as a function of the peak current.
The new results are presented in Table III. The flashover
rates were calculated by generating 5000 events for all test
cases. Although the errors are still large for some cases, they
are smaller than those obtained with the original neural
networks.
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Table I — Statistical analysis — U the return stroke velocity with unshielded lines

o

FITTFTTITTI7TTTTITT77

8 1000 10.90 14.90 11.20 16.00 27.20
2000 10.85 14.65 25.50 11.35 15.85 27.20
3000 11.13 14.56 25.70 11.46 16.43 27.90
4000 11.55 13.97 25.52 11.75 16.22 27.97
5000 11.60 13.74 25.34 11.76 16.08 27.84

2000 0.00 9.00 0.15 9.15 0.00 8.05 1.10 9.15
be—3m—=i 3000 0.00 9.43 0.13 9.56 0.00 8.50 "0.96 9.46
;__l:'i. 4000 0.00 9.77 0.10 9.87 0.00 8.90 0.97 9.87
T 5000 0.00 9.90 0.10 - 10.00 0.00 9.00 0.92 9.92
115w 10m 1000 0.00 8.60 6.90 15.50 0.00 9.00 5.60 14.60
l 2000 0.00 9.00 6.90 15.90 0.00 9.55 5.85 15.40
TRTITTTITHTTITITIIT 3000 0.00 9.43 6.96 16.40 0.00 9.93 5.90 15.83
4000 0.00 9.77 6.82 16.60 0.00 10.15 5.82 15.97
5000 0.00 9.90 6.86 16.76 0.00 10.26 5.86 16.12
T o e - T R ' -
1000 0.00 9.70 0.00 8.30 2.00 10.30
- :""' im 2000 0.00 10.20 0.00 8.85 2.10 10.95
= 3000 0.00 10.56 0.00 9.30 1.83 11.13
e 4000 0.00 10.90 0.00 9.62 1.82 11.45
L9 5000 0.00 10.94 0.00 9.72 1.80 11.52
L a” [ 1000 0.00 9.70 0.00 9.60 7.20 16.80
°|"ﬂ 2000 0.00 10.20 7.30 17.50 0.00 10.10 7.25 17.35
T 3000 0.00 10.56 7.40 17.96 0.00 10.53 7.23 17.76
4000 0.00 10.90 735 18.25 0.00 10.80 7.20 18.00
5000 0.00 10.94 7.42 18.36 0.00 10.90 7.34 18.24
tpn = 10 mm (phase conductor diameter) ; ¢sw = 5 mm (shield wire diameter) ; R = 50 Q (ground resistance);
NFO = Number of FlashOvers ; CFO (Critical FlashOver voltage) = 150 kV ; Ng=1 fl/km*/yr (ground flash density)
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Table III — Return stroke velocity as a function of
the peak current

L ] K L]
T 200 6.74 2.20
“’I"‘ 350 2.84 329
500 7.33 11.27
50 27.03 7.58
200 14.09 17.07
350 7.96 11.26
500 1.07 5.16
50 6.53 5.45
[ ] K L ]
200 5.20 5.44
irg= "[ 350 4.88 0.76
,,,,,,, 500 15.24 16.95
e 50 20.75 3.47
=
= T 200 12.00 1.82
138 m ==
‘ IF.H. 350 9.40 . 463
L)
500 536 13.53
L S AR 5
15
Lo
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Fig. 4. Probability density of the return stroke velocity.

VIL CONCLUSIONS

This work has presented the application of ANNS to the
lightning performance analysis of overhead distribution
lines. From the validation of the neural networks one can
conclude that it is possible to obtain a meural network
architecture to differentiate between the types of discharges,
and to calculate lightning overvoltages. The work has also
proved the importance of the training process. The
performance of a neural network was acceptable only
when the validation was based on the same range of values
used during the learning process.

The advantages of this approach are questionable if the
algorithms used for training the neural network are simple.
But even with sophisticated algorithms, the advantages are
doubtful since the time needed to perform a statistical
analysis can be rather short. The advantages are obvious
when the training is based on actual measurements. The
neural network model is another important aspect. The
backpropagation algorithm has been widely used in many
applications [3], but it has serious limitations, and it is not
very adequate for real-time applications [2].
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