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Abstract – An alternative method for power system
transient analysis, based on the Haar wavelet series
approximation, is proposed. The various types of
components, such as resistor, inductor, and capacitor
are modeled just once. The system model is set up
assembling component models in accordance with the
system configuration. The method explores properties
of the Haar wavelet operation matrix, so its
computational efficiency is very high. A concise
description of the method and some basic applications
are presented. The obtained results are like to EMTP
outputs.
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I. INTRODUCTION

Transient analysis assumes important role on power
system planning, project and operation, as well as on power
quality issue. Many computer-based techniques have been
developed to solve transient problems. They are generally
classified into time-domain and frequency-domain
methods.

Time-domain methods are the most widely used on
power systems. This is due to, mainly, the simplicity to
simulate nonlinear systems. However, they can originate
sustained numerical oscillations and, in general, they are
dependents upon the integration-step size.

Methods of both class present advantages and
disadvantages depending on the case, nevertheless they
have a common drawback: inability to handle short-time
transients mixed with low frequency signals.

Since the new electrical environment is full of complex
transient phenomena, it is impossible for the power
engineer to monitor, analyze and mitigate these phenomena
with traditional tools. The advent of modern techniques
and tools has become an indispensable tool than a
sophisticated academic toy [1]. Attempts to the limitations
of the traditional tools, recently methods based on the
wavelet theory have been proposed to solve power quality
problems, including transient analysis [2, 3, 4, 5].

Wavelets have been the focus of considerable research
over the last years. Although an immature area of study in
power system, wavelet transforms have already proved
efficiency to detect, localize, identify and classify the
disturbances [6, 7, 8].

We believed that, in a near future, the flexibility and
adaptability of this new tool could be utilized in an
integrated wavelet system to solve many power quality
problems (Fig. 1).

Fig. 1. Integrated wavelet system.

To fully realize this potential, additional research is
needed in the development and optimization of the wavelet
based methods for transient analysis.

II. WAVELET BASED TRANSIENT ANALYSIS

Lee & Meliopoulos [4] developed a method for power
system transient analysis that is based on the wavelet
companion equivalent circuit of each circuit element by
applying wavelet series expansion on the integral-
differential equations.

By combining the element wavelet equivalents and
network topology, the wavelet equivalent network is build.
The procedure results in a set of algebraic equations. The
solution is in terms of the wavelet coefficients of the
voltages at the nodes of the network.

The method has an elegant mathematical formulation
and presents similarity with traditional transient analysis
methods. However, the computation effort for integration
and differentiation operations on the wavelet basis increase
rapidly as the number of levels increase, besides these
operations are processed by rudimentary methods
(trapezoidal rule and the finite difference approximation).

Similarly to time domain methods, another
disadvantage is the matrix inversion operation on solving
the network. When the number of levels is high or the
system dimension is large, the effort computational is high.

The authors also affirm that their method is valid for
any set of orthogonal wavelets, but this is not completely
true, because the wavelet basis must be orthogonal and
differentiable.

Chen & Hsiao [2] developed a solution method to solve
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the state equations of lumped and distributed-parameter
linear systems based on the Haar wavelet. The main
characteristic of this technique is to convert the differential
equations into algebraic equations, and hence the solution
procedures are either reduced or simplified [2]. This
method presents three important advantages:

• simple and compact mathematical formulation for
the wavelet;

• the method does not use the derivative of wavelet
basis;

• the Haar transform coefficient matrix of the integrals
of the Haar basis (Pm matrix) is obtained in a simple
and fast way.

The exploration of the properties of the Pm matrix
allows the development of a fast and efficient algorithm,
which demand very low computational effort. The
disadvantage of this method is the mathematical
formulation, in terms of state equations, that is not usual for
power systems transient analysis.

The method by Lee & Meliopoulos have referenced as
WBTA (wavelet-based transient analysis) and the one by
Chen & Hsiao as HWM (Haar wavelet method).

III. THE PROPOSED METHOD

The study of the methods above described conduced to
the development of an alternative method for transients
analysis. This new methodology combines advantages of
those methods: Haar wavelet basis and Pm matrix from
HWM method and mathematical formulation from WBTA
method. We have named it Haar-based transient analysis
or HBTA.

The choice of the wavelet base function defines the
characteristics and the properties of the representation of
the signals on the wavelet domain [9]. Therefore, although
the proposed method uses nodal admittance matrix instead
of forming the state equations, it provides the same
representation as HWM method.

A. Haar Series Expansions

The Haar wavelet is the oldest and most basic of the
wavelets. Alfred Haar constructed it in 1910 and according
to [10], the wavelet theory is a generalization of his work.

Haar showed that the translates and scalings of the Haar
base function form an orthogonal basis on the interval
[0,1). Then, any function   that is finite and is square
integrable in this interval can be represented into Haar
series  [10]:
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where
x is a normalized variable defined as x =t/T;
 t is the independent variable and [0,T);

ja are the Haar coefficients of f(x);
     hj(x) are the Haar base functions;

m  is the size of Haar basis (m=2M-1);
M  is the number of levels (M≥1).

The Haar basis is a regular basis and it is only real
orthogonal wavelet basis with compact support and
symmetric. However, it is not continuous [11].

B. Operational Properties of the Haar wavelets 

In the study of transient analysis, it is frequently
required to take the derivative or integral of functions. The
differentiation of Haar basis results in impulse functions,
which are rather difficult to deal with. The integration of
Haar basis results in triangular functions, which should be
represented into Haar series [12]:
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where Pm is a m-square matrix which can be obtained by
the following equation [12]:
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where hm(x) is the Haar basis:
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The Pm matrix is named Haar wavelet operational

matrix. According to [12], this matrix provides an
important connection between the Haar wavelet transform
and dynamic system analysis.

The core of the idea starts from the representation into
Haar series of the derivative of the voltage v(x) at each
node n (except at the reference node) of the electrical
circuit:
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Integrating (5) yields:
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where pl,j is an element of the Pm matrix.

C. Haar Domain Equivalents Circuits

Similarly to WBTA method, each electrical circuit
component has a representation into Haar domain.

Capacitance: The current/voltage relationship for the
capacitor is:
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Upon substitutions of the variable t with the normalized
variable x and of (5) into (7), we obtained the Haar
equivalent for the capacitor:
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Resistance: The current/voltage relationship for the resistor
is:
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Upon substitutions of the variable t with the normalized
variable x and of (6) into (9), we obtained the Haar
equivalent for the resistor:
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Inductance: The current/voltage relationship for the
inductor is:
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Upon substitutions of the variable t with the normalized
variable x and of (6) into (11), we obtained the Haar
equivalent for the inductor:
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D. Haar Based Transient Analysis

The construction of Haar equivalent of the whole
circuit follows the same methodology of [13].

Initially, we represented the vector of the derivative of
the voltage at all nodes of the circuit v(x) into Haar series:
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The vector v(x) is obtained integrating (13):

).()( xx mmhUPv = (15)

In general, the current/voltage relationship for a device
k of the circuit can be expressed as:
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where
Ak, Bk and Ck are q-square matrices associated to the

resistive, capacitive and inductive elements,
respectively;

q is the number of the device terminal;
ik(x) and  vk(x) are qx1 vectors of the terminal node

currents and voltages for device k, respectively.
The term bk(x) is a qx1 vector associated to the current

sources and it can be represented into Haar series:
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where Ek is a qxm matrix.
We can also express the vector vk(x) in terms of the

vector of voltages at all nodes of the circuit:

)()( xx kk vDv = (18)

where Dk is the device connectivity matrix.
Upon substitution of (17) and (18) into (16), we have:
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Now, upon substitution of (13) and (15) into (19), we
have:
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The vector of currents at all nodes of the circuit for
device k, ikF(x), can also be expressed in terms of ik(x):
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where D kT is the transposition of D k.
Substituting (20) into (21) and applying Kirchhoff`s

current Law, yields:
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This new methodology also results in a set of algebraic
equations. For convenience, (22) must be restructured to be
solved by a direct method. After U is obtained, it can be
used in (15) to find v(x).

The HBTA method can be easily implemented according
to the following algorithm:

1.  Build Haar basis.
2.  Compute                     matrices.
3.  Build and solve (22).
4.  Solve (15).

IV. VALIDATION

In this section, the HBTA method is applied to basic
circuit configurations. The validation is made by
comparing its results with the ones obtained from EMTP.

This paper uses Microtran  as the EMTP software
package (we have named it MT), Fortran90 programming
language and circuit configurations from [13].

Circuit A. Consider the following electrical circuit:

Fig. 2. Electrical circuit A.

Initially, the circuit is not energized. At time, t=0, a
lightning strike is(t) occurs at node 1, on the interval
0≤t<25.6µs:
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where α1=0.06 106 s-1, α2=1.2 106 s-1 and i0=1 kA.
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Figs. 3 and 4 show the voltage waveforms at nodes 1
and 2 via HBTA (6 and 7 levels of resolution) and MT (128
samples) methods, respectively.
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Fig. 3. Voltage at node 1 from circuit A via MT and HBTA

methods with a) 6 and b) 7 levels of resolution.
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Fig. 4. Voltage at node 2 from circuit A via MT and HBTA

methods with a) 6 and b) 7 levels of resolution.

The accuracy of the proposed method is determined by
comparing of the average normalized error and the
maximum normalized error between the HBTA and MT
methods [13]. Tab. 1 shows these error indices for this
example.

Tab. 1. Errors of HBTA method x MT method (circ. A).
V1 (KV) V2 (KV)

M
Average Maximum Average Maximum

6 0.1874 0.5793 0.0688 0.2638
7 0.0378 0.1526 0.0146 0.0657
8 0.0002 0.0006 0.0002 0.0008

 Circuit B. Consider the following electrical circuit:

Fig. 5. Electrical circuit B.

The system was also not energized, when a lightning
strike occurred at node 1, now on the interval  0≤t<12.8µs.

Fig. 6 shows the voltage waveforms at nodes 1, 2 and 3
by MT method and the approximation achieved by HBTA
method, now using 8 levels of resolution. In this case, the
HBTA method shows to be as accurate as the MT method
(the curves are superimposed).
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Fig. 6. Voltages at nodes 1, 2 and 3 from circuit B via MT

HBTA methods with 8 levels of resolution.

Tab. 2 shows the error indices between the HBTA and
MT methods for this example.The error indices presented
at Tabs. 1 and 2 validate the proposed methodology for
transient analysis since that they are within acceptable
limits.

The proposed method provides excellent results, even if
a small number M is used. For M=8, the accuracy in Haar
domain is always the same as that of time domain. The
evaluated curves will be closer and closer to the MT
method, if a larger M is assigned [2]. Therefore, high
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precision can be ensured by HBTA method.
However, when the number of levels is high or the

system dimension is large, the computational effort grows
[5]. Therefore, similarly to the WBTA and HWM methods,
the HBTA method provides trade-offs between solution
accuracy and computational speed.

Tab. 2. Errors of HBTA method x MT method (circ. B).
V1 (KV) V2 (KV) V3 (KV)

M
Aver. Max. Aver. Max. Aver. Max

6 0.0101 0.0357 0.0372 0.1372 0.0259 0.0906
7 0.0043 0.0298 0.0145 0.1025 0.0114 0.0785
8 0.0002 0.0005 0.0001 0.0004 0.0002 0.0010

V. HBTA VERSUS HWM AND WBTA

In order to evaluate the performance between the
HBTA, WBTA and HWM methods, a simple circuit is used,
with the same conditions from circuit B.

Fig. 7. Electrical circuit C.

Fig. 9 shows the voltage waveform at node 1 via HBTA,
WBTA and HWM methods, with M=6, 7 and 8.

The error indices for M=8 are presented at Tab. 3.

Tab. 3. Wavelet-based methods x MT method (circ. C).
HWM HBTA WBTA

Average Error 0.00020 0.00020 0.00846
Maximum Error 0.00099 0.00078 0.08623

Since the error indices are very small, they can be better
visualized by error analysis presented in Fig. 8.
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Fig. 8. Error analysis between method MT and wavelet-
based methods from circuit C.

Fig. 10 presents the same analysis for circuit A.  In this
case, we have only evaluated the average error.

It is noted that the accuracy of the wavelet based
methods depends decisively on the number of wavelet
levels used [2, 3, 4, 5].
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Fig. 9. Voltage at node 1 from circuit C via HBTA, WBTA

and HWM methods with a) 6, b) 7 and c) 8 levels of
resolution.
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As it would be obvious, the HBTA and HWM methods
present similar error indices, since that both methods use
the same wavelet basis and the same operational matrix. In
all cases studied, the results presented by these methods
were so much betters than those presented by WBTA
method as large were it was the used number of levels. This
is due to the rudimentary methods on integration and
differentiation operations used by WBTA method.

For all wavelet methods, the maximum error always
occurred at instants of abrupt variations (for example,
initial instants of the disturbances).

About computer execution time, in all cases studied, the
HWM and HBTA methods are faster than WBTA method.
This is due to the advantages presented in section II.
Therefore, for applications where computation speed is
important, Haar wavelet based methods offers on of the
best choices. However, all wavelet-based methods are
always more slow than Microtran . The values from Tab.
4 reveal this conclusion.

Tab. 4. Execution time of wavelet-based
methods (circuit C).

M MT WBTA HWM HBTA
6 0.00794s 0.17s 0.05s 0.05s
7 0.00623s 0.77s 0.11s 0.39s
8 0.00615s 6.15s 0.60s 2.53s

VI. CONCLUSIONS

A new method for transient analysis has been presented.
The method uses the simplest wavelet function, or, Haar
wavelet. By combining the Haar wavelet and its
operational matrix with traditional mathematical
formulation for transient analysis, the proposed
methodology results in an very simple and accurate
method.

Several case studies have shown the feasibility and
practicality of the method. To fully realize this potential,
the method must be applied to, for example:

� larger circuits,
� three-phase circuits,
� distributed-parameter systems,
� non-linear systems.

Once that the same performance occurs, we believed
that the proposed method will be a potential candidate to
the integrated wavelet system (Fig.11):

Fig. 11. Integrated wavelet system.

Now, the integrated wavelet system will can execute
two types of analysis, using the same wavelet:

� nodal analysis → HBTA method,
� state analysis → HWM method.
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