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Abstract: This paper presents the application of Fuzzy ARTMAP
neural network for evaluating on-line power system dynamic
stability.
Using the matrix transformation of the S-matrix method, the
absolute value of the most critical eigenvalue in Z-plane has been
regarded as dynamic stability index of power system.

For evaluation of dynamic stability indices, a typical power system
& tested and the results are compared with those obtained from
classical multi-layer Perceptron. For on-line training, the Fuzzy
ARTMAP network is found to be a better choice than the other
peural petworks. Also it is shown that the Fuzzy ARTMAP network
has low sensitivity to the number of data set selection, which is used
for training, and to the mmber of input bits.
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1. Introduction

An important task in power system operation is to decide
whether the system is currently operating safely, critically or
unsafely.

Requirements for dynamic stability techniques consist of
both the computational efficiency and high accuracy.
Eigenvalue analysis is one of the conventional methods in
dealing with the dynamic stability problems. In this paper the
stability is evaluated by calculating the eigenvalue of the
system matrix in the linearized dynamic equation. However,
many of analytical methods used for determination of these
eigenvalues such as QR method [1] and modal analysis [2]
and some other methods are discussed in [3], [4].

These methods are very time consuming and difficult.
More recently the application of neural network has
developed in many of engineering problems. One of these
problems is determination of critical eigenvalue in a power
system done by back propagation method [5] or KOHONEN
neural network classifier [6].

In this paper, a different approach is proposed for
dynamic stability assessment. This approach is based on
Fuzzy ARTMAP network. Because of self-organized
characteristic of these networks, they can be used online in

power systems for predicting stability indices. In [3]
ARTMAP Network is used to evaluate the stability of power
system, but it only states if power system is stable or not. It
doesn’t have any idea about stability indices.

This paper not only states the situation of power system
from stability aspects but also computes stability margin of
power system. In Section 2 the dynamic model of a power
system is used and also the assessment of dynamic stability in
power systems is introduced. Moreover it introduces the
dynamic stability indices as a critical eigenvalue in dynamic
model. Section 3 introduces a brief description of Fuzzy
ARTMAP network at a level that is necessary to understand
the main results of this paper. The experiments are discussed
and the results are presemted in section 4. Finally, the
conclusions are drawn in section 5.

2. Dynamic Stability Assessment

The normal dynamic operation of a power system
requires that all eigenvalues of a system to be in the left side
of imaginary axis.

In a definite condition of loadflow, any power system has
one critical eigenvalue, which is defined as the fastest
eigenvalue that crosses imaginary axis in maximum load and
maximum generation condition.

Using the S-matrix method [6], most critical eigenvalue in
S-plane is regarded as maximum absolute value of
eigenvalues in Z-plane.

Considering a power system under small disturbances, the
linearized system state equation can be written as:

Xx = A X
Where,
x: State variable vector
A,: system matrix
Now, by assuming

1)

x = [A8,Aw ,Ae'g ,AV 5 ,AE g ,AV¢]
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The S-matrix method employs the transformation of the
left half-plane into the unit circle i.e. transforming system
matrix A, into the following matrix:

A,=(A,+n)A, -h)" 3)
Where,

A, transformed system matrix

I: unit matrix

h: positive real number

Equation (3) indicates a mapping transformation from S-
plane to Z-plane as shown in figure 1, where the difference
between the stable region in S-plane and in Z-plane is given
in hatched area. Figure 1(a) denotes the stable region in S-
plane while figure 1(b) illustrates the same one in Z-plane.
The advantage of Z-plane is that the system stability depends
upon the existence of eigenvalue within the unit circle. As a
result, power system dynamics is evaluated by the absolute
value of most critical eigenvalue of matrix A,.

In the S-matrix method, the power system dynamic
stability can be judged sby the absolute value of the most
critical eigenvalue such as

(4)

Where A is the most critical eigenvalue of matrix A,
Therefore we have:

A.M

p.:

p<l Stable
p =1 Critical Stable (3)
p>1 Unstable

Since the method makes use of mapping of the eigenvalue
from S-plane to Z-plane, the most critical eigenvalue is the
one with the largest absolute value in Z-plane. Now, the
power system dynamic stability can be judged by examining
if the eigenvalue with the largest absolute value exist within
the unit circle as shown in figure (1):

(b) Z-plane

(@) S-plane
Fig 1. Stable Region of Eigenvalues in s-plane and z-plane

3. The Fuzzy ARTMAP network

Fuzzy ARTMAP is a network with an incremental
supervised learning algorithm, which combines fuzzy logic
and adaptive resonance theory (ART) for recognition of
pattern categories and multidimensional maps in response to
input vectors presented in an arbitrary order. It realizes a new
minimax leaming rule, which jointly minimizes the
predictive error and maximizes code compression, and
therefore generalization [4].

A match tracking process that increases the ART
vigilance parameter achieves this by the minimum amount
needed to correct a predictive error. The Fuzzy ARTMAP
neural network is composed of two.Fuzzy ART modules,
namely Fuzzy ART, and Fuzzy ART),, which are shown in
figure (2).

After network is trained and clusters are created, then it is
placed in parallel with power system to evaluate stability
indices as shown in figure (3). The Fuzzy ARTMAP in
prediction mode is shown in figure (4).

The interaction mediated by the map field F*° may be
operationally characterized as follows:

a) ART, and ART,,

The inputs to ART, and ART, are in the complement
code form:
For ART,, I=A=(3,3");
For ART,, I=B=(b,b");
For ART,, let x*={x,",....xoma"} denotes the F;* output vector
, Y={y\...yn.'} denotes the F.' output vector, and
w={w;",....Wpma } denotes the jth ART, weight Vector.
Also for ART;, let X*={x,",....xan’} denotes the F,° output
vector, Y’={y:’.....y»"} denotes the F,® output vector, and
wi={wi,....Wiomy'} denotes the kth ART, weight vector.
For the map field, let x®={x,",....xn"} denotes the F*
output vector and W ={w;®,....wpn"} denotes the weight
vector from the jth F,® note to F**.
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b) Map Field Action

The map field F*° is activated whenever one of the ART,
or ART, ories is active. If node J of Fg is chosen, then
its weight Wi activate F*. If node K of F,” is chosen, then
the node K in F* is activated by 1-to-1 pathways between F’
and F®. If both ART, and ART, are activated, then F*
becomes active only lf ART, predicts the same category as
ART, via the weight wJ <

'Ihel*"bomputvectcrx obeys the following:

(y® AW if the JthF} node is activated
and F; is active
W if the JthF; node is activated
X _ ] and F, is inactive )
y if F; is inactive
and F} is active
0  if F;is inactive
| and F; is inactive
By (6), x* = 0 if the prediction w,® is disconfirmed by y".
Such a mismatch event triggers an ART, search for a better
category.

c) Match tracking
At the beginning of each input presentation to the ART,
vigilance parameter p, equals a baseline vigilance p.. The
map field vigilance parameter is py. If
K <pwlyl, @
Then p, is increased until it is slightly larger than
|AAw;"|A|", where A is the input to F\" in complement
coding form. And
x| = |Aawy'| < pa |Al, (8)
Where J is the index of the active F," node. When this

occurs, ART, search leads either to activation of another F*
node J with:

x| = |AAw;| 2 pa |Al )
and

I = [y°Aws™] = pa [yl (10)

Or, if no such node exists, to the shutdown of F,* for the
remainder of the input presentation.

d) Map Field Learning

Learning rules determine how the map field weights ch'b
change through time. This can be done as follows: Weights
wj( in F,* ->F® paths initially satisfy:

W 0)=1

During resonance with the ART category J active, w;™
approaches the map field vector x®. With fast learning, once
J learns to predlct the ART, category K, that association is
permanent, i.e., wi™ = 1 for all time.

Map Field Fab

Fig2. A typical Fuzzy ARTMAP architecture

Stability Indices

Input

Fig3. On-Line Training

Meap Field Fab

QutPut

I

Foa |__A=(2a") 1—-——\1»:/

Fig4. Fuzzy ARTMAP network for classification
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4, Simulations

In order to test the algorithm for its effectiveness in
predicting system security, we select a typical power system
that is used in most studies. The 39 Bus New England power
systems with 10 machines is tested as shown in figure (5).
System configurations are available in [6], [7].

7 We study 6 cases in various situations and in each
situation; effect of various conditions is considered. In cases
of 1 through 5, we use Fuzzy ARTMAP Network and in case
6, a Perceptron Network is used. Finally the obtained results
are compared.

In each case, performance error of neural network is
calculated according to the following formula [6]:

an

E=‘£l— Ji ()’di'Yui)

Where,

yqi : Desired output of NeuralNetwork.
¥a ¢ Actual output of Neural Network.
N : Number of Data Set for Training.

Fig 5. Typical power system

Case 1:

Using a step size of 0.05 for changing real power in both
load buses and generation buses and finding critical
eigenvalue, a set of 65 pattems was obtained off-line. In each
step we used bus voltages ( [Vi| , &; ) as input bit pattemn.
These input bits and its respected critical eigenvalue make an
input/output pair for neural network. These pairs were used to
train the Fuzzy ARTMAP network. In this test, parameter p
was chosen to be p,=0.98, pv="+1, pw="+%1. A set of 6
training pattems was randomly selected from the above set.
After training the network with 65 patterns, the set of 6
random pattems was used to test network. Summery of
obtained results is given in table (1).

Training Error of this test is about 0.948% and is shown
in figure (6).

Case 2:

In Anocther test we used the same number of data set, but
we selected additional bit patterns as input. In this case, bus
voltages and generating active power for generation buses
and demanded active power for load buses ( [V{ , &, Pg,
Pd;) are used as input bit patterns. Vigilance parameters are
selected as above. Error obtained in this test is about 0.948%
as it is seen; it is equal to Error obtained in case 1. The result
is shown in figure (7).

Case 3:

In this test we used step size equal to 0.01, which creates
more set of data (about 6400 set).

Also we used the same input bit patterns and the same
Vigilance parameters with case 2. Error in this test is equal to
0.87%, which is a little lower than previous tests as it is
shown in figure (8). Bt

Case 4:

In this case we used 7800 set of data, and the input bit
patterns are used as the one in test 1, it means |V{ , &
Vigilance parameters are selected as before. Error obtained in
this test is the same as case 4 and is shown in figure (9).

Case 5:

In this case we used step size equal to 0.05 which creates
65 set of data. Also we used the same input bit pattems with
case 2. But In this case, vigilance parameters are selected
lower than before (p,=0.93, pv=0.92, ps=0.9). As it is shown
in figure (10), error in this case is too higher than other cases.

Case 6 (Perceptron network):

In this case we used a 3-layer Perceptron Neural-Network
with backpropagation method of training. Also we used the
same input bit patterns. Error in this case is higher than the
above cases and computing time for training is.-too high. A
plot of error in this case is shown in figure (11).
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Table (1) Summery of Test Results

V , delta
g v i V , delta ,Pg , Pd AN W < AA Y . . 409
ot
& v ¢ V , delta ,Pg , Pd £Y. AV A | ey | e AV %
E’ ¢ VA« V , delta a1A Yele can | oAy e VLAY 9
- o 10 V , delta , Pg , Pd 1 ¢ Tar |y | oA | %
= Test | Data Set Input Bit patterns Hidden Neuron : °
Learning Rates Ei
2§ |No. No. | ForNeuralNetwork | NodeNo .| Type g HeELror
L =
3 § ‘
5 1 10 V ,delta ,Pg ,Pd Yo BSF p)=n¥f =) 1Y%
5. Conclusion [5S] ME. Aggoune, LE. Atlas, D.A. Cohn, M.J. Damborg,

IntlﬁspapaanewappmdlbasedeuzzyAR’IMAP
NeuralNetwork for estimated dynamic stability indices has
been presented.

For on-line training, the fizzy ARTMAP network was
found to that is a better choice than other neural-network
training method.

It was shown that Fuzzy ARTMAP network has low
sensitivity relative to the selection of number of data set feed
to it for training and also relative to the number of input bits.
'I]meooddberegzudedasanadvantageofthisnﬁwork.As
a result a lower number of data set for training could be
selected which takes less time for computing in off-line
mode.
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