
International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA

1

Development of Data-Editor
for Electro-Magnetic Transients Program

Naoto NAGAOKA 1, Daisuke TATSUDA, Akihiro AMETANI 1

(1) Dept. of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
(e-mail: nnagaoka@mail.doshisha.ac.jp, aametani@mail.doshisha.ac.jp)

Abstract – This paper describes an editor for data of the
Electro-Magnetic Transients Program (EMTP). The editor
can run on Microsoft Windows in addition to Unix operating
system, which support the Java Virtual Machine. An
interactive syntax check enables to know error while
inputting data. The function is realized by a multiple threads
feature of the Java language. The data-structure is easily
recognized by colored keywords. The type of the recognized
circuit element is expressed in the status bar, and also as a
tool tip. The editor has another window, which displays an
electric manual or a theory of the model for enhancing the
convenience of users.

Keywords – EMTP, Editor, Java, Thread, Electric Rulebook

I. INTRODUCTION

Electro-Magnetic Transients Program (EMTP) is widely
used for numerical simulations not only of power systems
but also of electronic circuits, because the EMTP adopts a
generalized solution scheme and has many circuit
models.[1],[2] The high capability makes its data structure
complicate. Some data input tools using Graphical User
Interface (GUI) have been developed for an easy
simulation. There is no doubt about the usefulness of the
GUI, a character-based editor is still informative and
helpful to make use of data accumulated in the past years.

This paper presents a data-editor, which is useful both
for beginners and for specialists of the EMTP. The editor is
written in Java to achieve “Write Once, Run
AnywhereTM”[3],[4]. The editor can run not only on
Microsoft Windows, but also on Mac OSX and Linux.

The editor adopts the Java Foundation Classes (JFC) and
the Swing[5],[6], which are a set of Java class libraries
provided to support building GUI for Java applications.
The Swing provides many standard GUI components such
as buttons, lists, menus, and text areas. It also includes
containers such as windows and tool bars

All of the JFC technologies are fully internationalized,
so developers can easily build applications that can interact
with users around the world using the user's own language
and cultural conventions.

II. STRUCTURE OF EMTP EDITOR

The EMTP has been widely used in many countries and
it runs both on Windows and on Unix operating system.
This is a thorny matter for a developer of supporting
routines of the EMTP. If a developer takes the Windows
Operating System (OS), technical supports to Unix users

become difficult. The developed editor is written in Java
for clearing the issues. Because the Java language is
“platform-neutral,” the programmer can develop without
regard for operating systems and also computer
manufacturers. In addition to the OS matter, the Java
automatically tailors locale-specific matter according to the
conventions of the end user's language and region. A text
within a user interface is the most obvious example of the
locale-specific data. For example, a button should
expressed in different languages. The Java gives the correct
label according to the OS language without any code.

Fig. 1 illustrates a structure of the EMTP-Editor. The
editor has two windows, which are an Editor Desktop and a
Help Window. A dialog box will be displayed when the
user invokes a command such as Open, Save or Print File,
or Search & Replace.

Fig. 1 Structure of “EMTP-Editor”

Fig. 2 shows the Editor Desktop, which is a main
window of the editor. The desktop consists of a menu, a
tool and a status bar, and some internal frames, which
display data decks of the EMTP.

A. Menu Bar

The editor supports commands shown in Table 1. These
commands are common in a standard text editor except
“Exec”. The menu accepts a shortcut that activates a menu
item from the keyboard. Each shortcut is expressed by a
keystroke combination, which is a modifier key and a
mnemonic character, like Alt-F. The mnemonic is
expressed as an underlined alphanumeric character in a
menu title.

The Exec command invokes the EMTP and directly
sends a data deck, which is displayed in an editing internal

International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA

2

frame, to the EMTP. Because the editor just internally
invokes a command as shown in Table 2, the user can run
an appropriate version of the EMTP by creating the
command file. Some sample command files for major
versions of the EMTP will be distributed with the editor.

Table 1 Menu and commands

File Edit Search &
Replace Window Exec

New1 Cut5 Search10 Cascade Invoke EMTP11

Open2 Copy6 Tile
Save3 Paste7 file 1
Print4 Undo8 :
Exit Redo9 file n

Table 2 Exec command

OS Command
Windows 9x command.com /c start edRunTp

Windows NT, 2000, XP cmd.exe/c edRunTp
Others (Unix) edRunTp

Fig. 2 Editor desktop

B. Tool Bar

Fig. 3 illustrates the tool bar. The numbers illustrated
below the figure denote commands expressed in Table 1.
The tool bar can be dragged out into a separate window by
the user (Undocked Tool Bar). When the user of the
program pauses with the cursor over the buttons, the tool
tip for the button comes up.

1 2 3 4 5 6 7 8 9 10 11

Fig. 3 Tool bar

C. Internal Frames

The editor supports a multiple document interface (MDI)
which provides multiple internal frames (data decks). The
user can easily compare two or more files. Each internal
frame has a title bar and standard window controls
(minimize, maximize and close controls). A file name is
displayed in the title bar as shown in Fig. 2.

The data structure is easily recognized by colored
keywords and a text in a status bar and in a tool tip. This
feature is achieved by an interactive syntax check, which is
described in the next chapter. The present version executes
a shallow syntax check for speeding-up the execution. The
supported data of the present version are listed in Appendix.

D. Status Bar

Status bar displays the caret position and the type of the
circuit element, which is pointed by the caret.

E. Help Window

When the user presses a right button of a mouse on a line,
a rule book windows comes up as shown in Fig. 4. Because
the editor knows the type of the EMTP element, a correct
page is displayed. This feature is very useful not only for a
beginner but also for a professional expert.

Fig. 4 Rulebook window

Tool tip

Status Bar

Keyword

Tool Bar
Menu Bar

International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA

3

The “Copy Button” within the tool bar of the Help
Window copies the selected area into a system clipboard.
Thus, the example in the rulebook can be paste to the
editor window. The user creates a data deck without the
thick and heavy printed rulebook. Because the electrical
rulebook is written in Hyper Text Markup Language
(HTML), the user can customize and translate to any
language.

F. Dialog Boxes

Fig. 5 illustrates Open Dialog Box, which comes up
when the user enters “Open” command. The dialog box has
a typical user interface for open a file. The labels, for
example “File Name”, are expressed by Japanese
characters in the figure, because the editor knows the locale
data of the OS. If the editor runs on an OS of English
version, these messages are displayed in English.

Fig. 5 Open dialog box

G. Distribution

Installation is tedious work for beginners. The developed
program consists from more than 100 files which are some
class files, HTML files and so on. However, the
distribution files is only an executable Java Archive (JAR)
file with a short “Read_me” file.

The JAR is a platform-independent file format that
aggregates many files into one. Java byte codes (class files)
and their requisite components, such as images and HTML
files, can be bundled in a JAR file. The whole material can
be downloaded by the user in a single transaction. The JAR
format also supports compression, which reduces the file
size, and improves the download time. The file size of the
current version is less than 200 kB and is small comparing
with the typical program developed by the other language.
Because the program written in Java runs through the Java
Runtime Environment (JRE), the executable files only
holds the Java byte code and does not have enormous
executable code of the library. The user can start the editor
just after copying the executable JAR file by clicking the
icon of the file. It will take 10 to 15 seconds to display the
Edit Desktop for invoking the JRE (Java Virtual Machine).

III. STRUCTURE ANALYSIS

A. Data base

The proposed program has a database, which stores
information of each element. Table 3 shows the fields of
the database. The “Code” is expressed by a binary number
and each bit denotes characteristic of the data. For example,
some bits express the level of the data (such as branch,
switch, source, or plot data) and another bit expresses
whether the record includes a keyword or not.

Table 3 Database

Field Comment Example
Element Name Index Key Pi_Equivalents

Code 32bit Integer 03010000 (Hex)
Tool Tip Tool Tip Message “Pi_Equivalents”

Color Color Table Number 0 (black)
Color Line Flag If Keyword Then False true
Help File Name Chapter of Rule Book branch__.html

Anchor Section of Rule Book Pi_Equivalents

B. Model-View Separation

The Swing architecture, which is adopted by the editor,
is rooted in the model-view-controller (MVC) design that
dates back to SmallTalk. MVC architecture calls for a
visual application to be broken up into three separate parts:

(1) A model that represents the data for the application.
(2) The view that is the visual representation of that data.
(3) A controller that takes user input on the view and

translates that to changes in the model.
The architecture is useful for simplifying testing and

improving accessibility, in general. It is also useful in a text
component because printed views and screen views should
be formatted differently when the text is displayed.

The text within the Java can be stored with attributes.
The developed editor is used “Font Color” attribute and a
user-defined attribute to save the “Code” shown in Table 3.
If the attribute is set to the text data, the text is
automatically displayed using the stored attribute in the
Java. The editor accesses the Code through the stored
attribute and retrieves the related data such as name of
HTML file for a rulebook.

C. Multiple Threads[6]

The data structure of the EMTP becomes complicate to
handle by the new editor when the data case becomes large.
This fact force to consume processing times for analyzing
the structure of the data and for detecting errors. Otherwise,
the response of the editor should be as quick as possible for
a comfortable usability of the program. The developed
editor adopts a multiple threads scheme to satisfy the
contradicting requirements.

Most GUI work naturally occurs in a thread called
“event-dispatching thread” in the Java. Once the GUI is
visible, most programs are driven by events such as button
actions or mouse clicks, which are always handled in the
event-dispatching thread. The Java is designed in
conformity to the “single-thread rule.” Thus, the events are

International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA

4

dispatched in a predictable order from the same event
queue as mouse and keyboard events, timer events, and
paint requests.

Although there are several advantages in executing all of
the user interface code in a single thread, a background
thread to perform time-consuming operations without
affecting the performance of GUI is required for the editor.
It will take a long time for analyzing structure of data of the
EMTP, and text is displayed according to the result of the
analysis. For example, keyword such as “BEGIN NEW
DATA CASE” should be displayed as a colored text.

D. Algorithm

Fig. 6 illustrates a flow chart for the structure analysis of
a data deck. If a keyboard event for an insertion or a
deletion of a character is detected, the event handler kills a
thread, which is previously invoked for an analysis of the
structure. Because it is generally impossible to finish the
analysis between the keyboard events, the previous analysis
should be interrupted by the subsequent keyboard event. A
new thread is created and started after a confirmation of the
termination of the thread.

insert or delete text

Create New Thread

Search Start Line for Analysis

Search Section

TACS Plot…

interrupt

Sec.N

Next Line

No

Interrupt Old Thread

Exit
Yes

Event
Dispatching

Thread

Fig. 6 Flow chart for analyzing structure

Strictly speaking, the structure analysis has to be
restarted from a top of the data deck, when a user inputs or
deletes a character. To reduce a load of the CPU, the
program try to localize the analyzing area.

The following operation related to the GUI is processed
within the event-dispatch thread to keep consistency of the
GUI. The analysis is carried out on a line-by-line basis. At
the first stage, the editor determines a section, which is
estimated to be included in the present line by the help of a
“BLANK” line. Within the section, the element of the
EMTP is mainly determined by the type-code entered at the
beginning of the line. If the editor find the element, the
program looks in the database and sets its text color and

binary code into an attribute field of the text component of
the Java. The text color is automatically changed by the
Swing libraries.

If the line analysis is finished, the program checks the
interrupt flag, which is set by the keyboard event handler.
If the continuous editing is detected, the thread for
analyzing the old data deck is aborted.

IV. CONCLUSIONS

This paper describes a character-based text editor
specialized for the EMTP. The editor is platform
independent from viewpoints of hardware and also from an
operating system. The feature is achieved by the Java
language. Although Java brings no advantage to a
numerical processing field, the feature of the language is
suitable for developers of supporting routines of the EMTP.
The platform-neutral technology releases a developer from
tedious conversion works.

Although the developed editor is designed for
conservative EMTP users, it is also useful for beginners.
The editor has an electric manual written in HTML, and
the file can be easily translated into any language. The
editor opens appropriate page of the rulebook
automatically. In addition, the editor tells the error by
changing text color. The recognized circuit element is
expressed in the status bar, and also a tool tip for the line
comes up when the user pauses with the mouse cursor over
any of the lines. These features may be helpful for
beginners. The property is achieved by an interactive
syntax check with a multiple threads programming for
improving the execution speed of the check as high as
possible.

The editor has basic commands for a typical editor and
the most commands are invoked from a tool bar by clicking
a button. The editor also has an “Exec” command, which
invokes the EMTP. The users can simulate a system
without exiting the editor program.

ACKNOWLEDGMENTS

The authors are most appreciative of the contributions of
Dr. Y. Baba for useful suggestion to this project.

The authors wish to express our gratitude to the students
of the Power System Analysis Laboratory of Doshisha
University, especially M. Nayel, T. Kawakami and A.
Miyamoto for testing the program.

REFERENCES

[1] W. Scott-Meyer, ”EMTP Rule Book,” B.P.A., 1977
[2] H. W. Dommel, ”EMTP Theory Book,” B.P.A., 1986
[3] Matt Curtin, “Write Once, Run AnywhereTM: Why It Matters,”

http://java.sun.com/features/1998/01/wora.html
[4] Sun Microsystems, Inc “JavaTM2 SDK, Standard Edition

Documentation Version 1.4.1, ”
http://java.sun.com/j2se/1.4.1/docs/index.html

[5] S. Pantham, “Pure JFC Swing”, Sams Publishing, 1999.
[6] Sun Microsystems, Inc “The Swing Connection,”

http://java.sun.com/products/jfc/tsc/,
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html

International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA

5

APPENDIX

List of Supported Data (Ver.1)
1. $Cards
$CLOSE, $DEBUG, $DEPOSIT, $DISABLE,$ENABLE,
$ERASE, $LISTOFF, $LISTON, $OPEN, $PUNCH,
$SPY, $SPYEND, $STARTUP, $STOP, $UNITS,
$VINTAGE, $WIDTH

2. /Cards
/REQUEST, /TACS, /MODELS, /BRANCH,
/SWITCH, /SOURCE, /OUTPUT, /INITIAL,
/LOAD FLOW, /PLOT,

3. Special Request Cards
59 keywords (from “ABSOLUTE TACS DIMENSIONS” to
“ZO”)

4. TACS/MODELS
“TACS STAND ALONE”, “TACS HYBRID”,
order-zero block, n-th order s-block,
All Devices: Code 50-66, FORTRAN expression,
TACS Sources (Type-11, 13, 14, 23, 24, 26, 90, 91, 92 and 93),
TACS initialize (Type-77), TACS output (Type-33) ,
“MODELS”, “MODELS STAND ALONE”

5. Branch Data
5-1. Linear Elements
lumped series R-L-C, “NAME :”
pi-circuits, mutually-coupled R-L,
“CASCADED PI”, “USE AR”, “USE RL”
multi-phase constant-parameter line, JMARTI line,
recursive-convolution line,
“TRANSFORMER”, “IDEAL TRANSFORMER”,
 “TRANSFORMER THREE PHASE”,
 “KIZILCAY F-DEPENDENT”,
5-2. Nonlinear Elements
Nonlinear R:
Type-91 (TACS controlled and Multiphase Time-Varying),
Type-92 (Exponential and Piecewise-Linear)
Type-97 Time-Varying,
Type-99 Pseudo-Nonlinear

Nonlinear L:
Type-93 True Nonlinear,
Type-96 Pseudo-Nonlinear Hysteretic,
Type-98 Pseudo-Nonlinear,
“TACS CONTROL”

6. Switch
Type-0 Ordinary Switch, Type-11 Diode,
Type-12 Gap and Triac, Type-13 TACS Controlled Switch,
Type-76 STATISTIC switch

7. Sources
Empirical Functions Source,
Static Sources (Type-code from 11 to 18)
Dynamic Sources (Type-19 UM and Type-59 SM),
Connection to TACS Variable (Type-60)

8. Output
All types are supported (Type -5 to 1)

9. Initial conditions
All types are supported (Type 2 to 4)

10. Load Flow
FIX SOURCE power constraint

11. Plot
graph case-title text, graph subheading text, plot data,
“CALCOMP PLOT”,“PEN PLOT”, “PRINTER PLOT”,
“X-Y PLOT” “SCREEN PEN”, “SCREEN PLOT”,
“BRANCH”, “FOURIER OFF”, “FOURIER ON”,
“SMOOTH”, “PRINT HEAD OFF”

12. Others
statistical tabulation, SPY statistical tabulation (FIND-QUIT)

13.Unsuported Data (Ver.1)
$INCLUDE, $ABORT,
continuation request "$$", Free format input
“DATA BASE MODULE”, “NODA SETUP”,
“LINE MODEL FREQUENCY SCAN”,
Parallel Monte Carlo simulation,
Type-93 Nonlinear L “FORTRAN” keyword,
SYSTEMATIC Switch,

