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Abstract – Using lumped resistances causes a discretization 
error that is analyzed in this paper when the lumped resis-
tances are small compared with the characteristic impedance 
of the line. The error depends on the variation of the current 
along the line. This variation is a function of the frequency 
and the impedance of the network connected to the line. The 
greatest deviation for a line model with three lumped resis-
tances occurs in general for frequencies where the length of 
the line corresponds to twice the wavelength of the line mul-
tiplied by a positive integer. Examples gave an apparent resis-
tance (i.e. the distributed resistance giving the same losses) 
between zero and twice the correct value. Reasonably accu-
racy is in most cases to be expected for frequencies up to 75% 
of the value where twice the wavelength corresponds to the 
length of the line. The apparent resistance may, however, 
deviate significantly from the correct value even at low fre-
quencies. A significant improvement may then be achieved by 
increasing the number of lumped resistances from  3  to  5. 
 
Keywords – Transmission line model, losses, lumped resistances, 
accuracy, frequency domain analysis, time domain responses 

 
 

I. INTRODUCTION 
 
An accurate model for transmission lines with losses 

must take the frequency dependence of the series resis-
tance and inductance into account. There exist models that 
do this in a satisfactory way. The use of such models is, 
however, somewhat limited due to the required input data. 
The user knows in most cases the resistance and induc-
tance at power frequency only. Those data correspond to a 
lossless line model plus a constant (i.e. frequency inde-
pendent) resistance. An accurate line model with this resis-
tance distributed along the line does not introduce any sig-
nificant simplification compared with a line model that 
takes the frequency dependency of the series impedance 
into account. 

 
An alternative line model [1] has therefore been intro-

duced (e.g. in EMTP) where the series resistance is repre-
sented by three lumped resistances, one at each end corre-
sponding to ¼ of the total resistance, and one in the middle 
resistance corresponding to ½ of the total resistance. The 
model corresponds then to two lossless line segments and 
three lumped resistances, except that the additional nodes 
introduced by the resistances are eliminated. The elimina-
tion has the advantage that no numerical problem occurs 

when the resistance approaches zero. 
 
The model with the lumped resistances is probably the 

most commonly applied model when losses are taken into 
account, mainly because it is very easy to use. It has fur-
ther the advantage that it does not increase the total com-
putation time significantly.  

 
The model gives unreasonable results unless the lumped 

resistances are small compared with the characteristic im-
pedance of the line. Most users are aware of this, but it is 
not uncommon to observe results that ignore this limitation. 

 
The influence of lumping the resistances may be signifi-

cant even when the total resistance is small compared with 
the characteristic impedance. This paper analyses the ef-
fect of lumping the resistance. A major part of this analysis 
is performed in the frequency domain where the current 
distribution along the line is determined assuming that the 
resistance is approaching zero. 

 
 

II. INCREASED PEAK VOLTAGE DUE TO 
LUMPED RESISTANCE MODEL 

 
The line model with lumped resistances may give an in-

creased voltage compared with a lossless model. This is 
shown in Fig. 1 where a 10 km single-phase line with  
400 Ω  characteristic impedance is inserted in a line with 
300 Ω  characteristic impedance. That line is assumed 
lossless and infinite long. A current is injected at one end 
of the 10 km line. The peak value of the current is 5 kA  
and it has linear increase and decrease with front time 
4 sµ and 50 sµ  time to half value.  

The figure shows the voltage at both ends of the line. 
The resistance of the line is 4 Ω /km. No computation was 
made with the resistance distributed along the line. How-
ever, an additional computation was made with the lumped 
resistance model (3 lumped resistances) but with the line 
divided into 10 equal segments. 

 The voltage at the end (A) where the current is injected 
obtains its peak value after 4 sµ  and the peak value at the 
other end (B) is obtained after about 37 sµ . 
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a) Lossless line model 
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b) Line model with lumped resistances 

other one to an impedance Zex. The current variation is 
calculated ignoring the resistance. This simplification is 
introduced since this paper focuses on cases where the 
lumped resistances are small compared with the character-
istic impedance. 

 
The current along the line can be expressed by the fol-

lowing equation: 
 

( ) ( )vxjDvxjCxI /exp/exp)( ωω ⋅+−⋅=   (1) 
 
where x is the position along the line and v is the speed 

of the traveling waves (i.e. the speed of light for an over-
head line). C and D depend on the applied voltage Uo, the 
impedance Zex, the characteristic impedance of the line Zch 
and the length of the line. Details are presented in the ap-
pendix. 

 
The losses along the line with the distributed resistance 

becomes: 
 

2
DIlrP ⋅⋅=  (2)         

    

( ) ( )∫ ⋅=
l

D dxxIxI
l

I
0

*2 1  (3)  

 
r is the resistance per unit length and l is the length. 2

DI  
is mean value of the square of the magnitude of the current. 
(f ile IP
2 

Fig. 1. Voltage response due to injected current at one end of a 10 
km line 

The following peak values were found: 
 

Line model Node A Node B 

Lumped resistances 866 kV 696 kV 

Lumped resistances 
10 line segments 

858 kV 696 kV 

Lossless 857 kV 734 kV 

 

The increased peak voltage due to the lumped resistances 
is not very significant, but it shows that lumping the resis-
tance may result in an increased peak voltage. 

 
III. FREQUENCY DOMAIN ANALYSIS 

 

The error caused by lumping the resistance depends on 
the variation of the magnitude of the current along the line. 
This variation is a function of the frequency and the exter-
nal network connected to the line. 

 
A very simple network is applied in this work in order 

to obtain results of general interest. One end of the line is 
assumed connected to an ideal voltage source Uo, and the 

 
Equation (1) gives: 
 

( )







 −−⋅⋅++=
vlj

vljDCrealDCI D /
/2exp1*222

ω
ω  (4) 

 
The losses with the lumped resistances becomes: 
 

2
LIlrP ⋅⋅=  

where 

( ) ( ) ( )[ ]2222 2/20
4
1 lIlIII L ++=  (5)      

         
IL and ID are proportional to Uo and depend otherwise on 

two parameters: ω l/v and Zch/Zex. 
 
Zex = Zch implies D = 0. The magnitude of the current is 

then constant (i.e. independent of the position) and 
22
DL II =  for all frequencies. 

 
Analysis when Zex ≠ Zch has been made based on the 

following numerical values: 
 

Ω= 300chZ , v = c (speed of light) and l = 30 km. The 
results are presented here using Uo/Zch as p.u. reference for 
the current. 
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Fig. 2 shows 2
DI  and 2

LI  when Zex = ∞  and Zex = 

chZ⋅2 .  
 
C and D are periodic with 10 kHz periodicity (i.e. add-

ing 10 kHz to the frequency gives the same numerical 
value). IL is periodic with 10 kHz periodicity. There is a 
good agreement between 2

DI  and 2
LI  except for a certain 

frequency range with center 10⋅n kHz where n is a posi-
tive integer. The values obtained with the lumped resis-
tance model are here significantly lower.  

 
Fig. 3 shows an example where Zex  is less than Zch. The 

result is similar to Fig. 2 except that 2
LI > 2

DI  when there 
is a significant deviation. 

 
The deviation due to the lumping of the resistance can 

be expressed as an apparent resistance. This resistance is 
the distributed resistance giving the same losses as the 
lumped model. The resistance (in p.u.) becomes 2

LI / 2
DI . 

Fig. 4 shows the results in Fig. 2 and 3 expressed as the 
apparent resistance. A fourth result corresponding to Zex = 
0 is included as well. 

 
a) Zex = ∞  

 

 
b)  Zex= 2 chZ⋅  

Fig. 2 2
DI  and 2

LI  for two values of Zex higher than Zch 

 
Fig. 3. 2

DI and 2
LI  when Zex = 0.5 chZ⋅  

 
The apparent resistance is reasonably close to unity (i.e. 

± 25%) up to about 7.5 kHz. The apparent resistance be-
comes zero at 10 kHz when Zex = ∞ . It is further worth to 
note that Zex = ∞  does not give an apparent resistance that 
equals 1.0 when the frequency approaches zero. 

 

 
Zex= 2 chZ⋅ and  Zex = ∞  (open end)  

 

 
Zex= 0.5 chZ⋅ and  Zex = 0 (short-circuit) 

 
Fig. 4 Apparent resistance 
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 The current at low frequencies is in that case due to the 
capacitance of the line only and it varies linearly along the 
line and equals zero at the open end. This current variation 
gives an apparent resistance equal to 1.125. 

 
The apparent resistance depends on the distribution of 

the magnitude of the current along the line. Fig. 5 shows as 
an example this distribution at three different frequencies 
when chex ZZ ⋅= 2 . 2

LI  depends on the current at the two 
ends and at the mid-point only. The current has its mini-
mum value at these three positions at 10 kHz and that re-
sults in a very low value for the apparent resistance. The 
situation is very different at 6.44 kHz where the relatively 
low value for the current between relative position 0 and 
0.5 does not influence 2

LI . 
 
The external impedance Zex has so far been a resistance. 

Figs. 6 and 7 show the apparent resistance when Zex is a 
capacitance and an inductance respectively. The imped-
ance Zex is then frequency dependent and the results are 
roughly in agreement with Fig. 4 except that the apparent 
resistance is close to 1.5 at 1.2 kHz when Zex is a 100 mH 
inductance. A similar peak appears with a lower value at a 
higher frequency when the inductance is 10 mH. 

 
 The current distribution when the inductance is 100 mH 

is shown in Fig. 8 for three selected frequencies. The cur-
rent at the end (relative position 1) is inductive and a ca-
pacitive component is added when one moves along the 
line towards the source. The current at the source is at 600 
Hz still inductive and a linear variation is observed in Fig. 
8. The current at the source becomes capacitive for the two 
other frequencies. This implies that the current is zero at 
some location along the line. This location becomes the 
mid-point at 1200 Hz as shown in Fig. 8. A linear current 
variation with zero value at the mid-point gives an appar-
ent resistance equal 1.5. 
 

 

 
 

Fig. 5 Current (magnitude) distribution when Zex = 2 chZ⋅  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Apparent resistance when the line is terminated by a ca-

pacitance 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Apparent resistance when the line is terminated by an 
inductance 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Current (magnitude) distribution when the line is termi-

nated by a 100 mH inductance 
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The lumped resistance model uses three lumped resis-

tances and a natural improvement is to use five lumped 
resistances, i.e. to divide the original line into two equal 
segments and to consider each segment as a line. This im-
plies roughly that the apparent resistance, as a function of 
the frequency, will be the same as shown so far if the val-
ues for the frequency are multiplied by 2. This approach is 
strictly not correct since it does not take the junction be-
tween the two line segments properly into account. Fig. 9 
shows as an example the apparent resistance when using 3 
and 5 lumped resistances for a line terminated by a 100 
mH inductance. It is seen that the peak value at 1.2 kHz 
with 3 lumped resistances is substantially reduced without 
any increase at 2.4 kHz when using 5 lumped resistances. 

 
IV. TRANSIENT RESPONSES 

 
There is no need to lump the resistance in a frequency 

domain analysis. This approximation was introduced when 
developing a time domain model. Some time domain ex-
amples will therefore be presented here. Fig. 10 shows the 
step response at the open end when the other end is con-
nected to an ideal voltage source with step voltage 1V. The 
line parameters are the same as in section III. The compu-
tation was performed with ATP and the series resistance 
was 1 /Ω km. 

 
Fig. 10 a) shows actually two responses, one corre-

sponding to 3 lumped resistances and one corresponding to 
5 lumped resistances. The deviation between the two re-
sponses is shown in Fig. 10 b). It is seen that the maximum 
deviation is about 0,2% of the source voltage. A greater 
deviation was expected from Figs. 4 and 9. The apparent 
resistance at 10 kHz is zero in Fig 4 (corresponding to 3 
lumped resistances). Fig. 9 gives with 5 lumped resistances 
an apparent resistance equal to 1 p.u. at 10 kHz when the 
line is terminated by a 100 mH inductance. This induc-
tance has, however, no significant influence at 10 kHz and 
above. 

 

 
 

Fig. 9 Apparent resistance when using 3 and 5 lumped resis-
tances. Line terminated by a 100 mH inductance 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a) Step response open end 
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a) Step response open end 
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b) Deviation between models with 3 and 5 lumped resistances 
 

Fig. 10 Time domain response, line with open end 

he reason for the minor deviation is probably due to 
 frequency spectrum of the response in Fig. 10 a). If 
re is no damping, it can be found that the dominating 
ponents correspond to the frequencies 2.5 kHz + 
kHz where n is an integer. The apparent resistance in 

. 4 is 1 p.u for those frequencies. The damping gives 
itional frequency components (actually a continuous 
ctrum), but they are probably less important. 

ig. 11 shows an example where the response is 
ngly modified when using 5 lumped resistances instead 
. The figure shows the open-end response when inject-

 a 10 kHz sinusoidal current at the other end. The fre-
ncy of the source corresponds to a natural frequency 
en the line is lossless. Using 3 lumped resistances gives 
near increase in the amplitude in Fig. 11 a). The ampli-
e is clearly limited by the resistance when using 5 
ped resistances (Fig. 11b). The amplitude after 10 ms 
bout 6 kV with 5 lumped resistances and about 30 kV 
h 3 lumped resistances. 

he results in Fig. 11 agree well with Figs. 4 and 9. 
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APPENDIX 

 
CURRENT DISTRIBUTION ALONG THE LINE 

 
 
         x = 0               x = l 
 
 
             + U0                Zex 
 
 
The general solution for the voltage along the line is: 
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b) 5 lumped resistances 
b) 5 lumped resistances 

 
Fig. 11 Open-end response when injecting a 10 kHz sinusoidal 

current 
 
 

V. CONCLUSION 
 
Representing the distributed resistance by 3 lumped re-

stances causes an error that depends on the variation in 
e current along the line. This variation is strongly influ-
ced by the network connected to the line. It is possible to 

nd a network where no error is introduced. Other exam-
es give at certain frequencies no losses at all or an appar-
t resistance that is twice the correct value. 
 
The most extreme deviation was found for frequencies 

here the line length corresponds to twice the wavelength 
 the line multiplied by a positive integer. 
 
The lumping of the resistance gives in some cases a 
ther inaccurate result even at rather low frequencies. 
ividing the line into two equal segments may then give a 
gnificant improvement. 
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( ) ( ) ( )xBxAxU γγ sinhcosh ⋅+⋅=                              (A1) 
where 
 

vj /ωγ =                                                               (A2) 
 
v is the traveling wave speed  
A and B depend on the terminal conditions. 
 
The current equals: 
 

( ) ( ) ( )[ ] chZxBxAxI /coshsinh γγ +⋅−=         (A3) 
 
where Zch is the characteristic impedance. 
 
Terminal conditions: 
 

( ) 00 UU =  
 
and                                                                             (A4) 
 

( ) ( ) exZlIlU =/   
 
gives 

0UA =  (A5) 

( ) ( )
( ) ( ) o

exch

chex U
lZlZ
lZlZB ⋅

⋅+⋅
⋅+⋅−=

γγ
γγ

coshsinh
coshsinh  (A6) 

 
An alternative expression for I (x) is: 
 

( ) ( ) ( )xDxCxI γγ expexp ⋅+−⋅=  (A7) 
 
 
Comparing A3 and A7 and introducing A5 and A6 give: 
 
 

( ) ( )
( ) ( ) chexch

chex

Z
U

lZlZ
lZZC 0

coshsinh
exp

2
1 ⋅

⋅+⋅
+⋅=

γγ
γ                    (A8) 

 
 

( ) ( )
( ) ( ) chexch

exch

Z
U

lZlZ
lZZ

D 0

coshsinh
exp

2
1 ⋅

⋅+⋅
−−

⋅=
γγ

γ                 (A9) 
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