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Abstract –This work presents a methodology for deriving a 
phase-domain transmission line representation based on time-
domain fitting. The resulting model is described by a polyno-
mial matrix in the discrete-time domain. The robustness of the 
representation, its stability and passivity, is attained by 
imbedding a set of constraints in the solution of the fitting 
equations, which are solved using quadratic programming. 
Results demonstrating the features of the derived representa-
tion are presented for the case of a two-phase asymmetric, 
untransposed transmission line. 

Keywords – Electromagnetic transients, transmission line, dis-
crete time, time-domain fitting, constrained least squares.  

I. INTRODUCTION  

The complexity and size of modern power systems have 
increasingly required electromagnetic transient studies to 
support decisions in both design and operation. The diver-
sity and accuracy of the available models for power sys-
tems components are noticeable. Considering the modeling 
of transmission lines, the frequency dependence of the line 
parameters is modeled by rational function approximations 
either in S or Z domain fitted to frequency response data 
points [1-6]. It is very important to ensure stability and 
passivity for the fitted functions.  

Such models can be separated into two large classes: 
modal-domain and phase-domain models. Usually they 
require the fitting of rational functions in the s-plane 
[2,3,4,5] and in the z-plane [6,7] to the admittance and to 
the propagation function frequency data points. The stabil-
ity of solution in [4] is attained deleting the unstable poles. 
In [5], only stable poles are allowed. Important improve-
ments to a Phase-Domain ARMA line model [6] are pre-
sented in [7]. Passivity for the approximated admittance 
matrices in the s-domain is taken into account in the fitting 
process in [8]. Techniques for obtaining transmission line 
representation (network equivalents) based on time-domain 
fitting have been reported in [9, 10]. 

In this work, the line is represented in the phase-domain 
based on time-domain fitting. Stability and passivity con-
straint equations are included in the fitting process by forc-
ing the poles of the fitted functions to be inside the z-plane 
unity circle and by forcing any negative eigenvalue of the 
real part of the admittance function G(ω) to be positive. 
The methodology for deriving a robust phase-domain 
transmission line representation is based on time-domain 
fitting for the calculation of Network Equivalents [9-11]. A 
polynomial matrix in the discrete-time domain describes 
the resulting model. The robustness – stability and passiv-

ity – of the model is attained by imbedding a set of con-
straints in the solution of the fitting equations, which is 
solved using quadratic programming. The required data can 
be obtained either from measurements or a computed time-
domain response of the transmission line. In the latter case, 
a highly accurate but complex and computational intensive 
model is used. The resulting representation retains the 
characteristics of the transmission line while providing a 
simple representation. As it is derived in the discrete-time 
domain, this representation can be easily integrated into 
transient calculation routines. Besides, it is closely related 
to the topology of digital filters. This makes the implemen-
tation of the derived model easier for the purpose of real-
time transient calculation in computers with limited 
architecture, as in the case Digital Signal Processing (DSP) 
cards.  

Section II presents the outline of the methodology. The 
topics of parameter identification, determination of the 
order and stability and passivity requirements of the repre-
sentation are described in Sections III and IV. Digital simu-
lation results are discussed in Section V. Conclusions are 
given in Section VI.  

II. METHODOLOGY 

The proposed methodology is based on the derivation of 
single-port and two-port network equivalents by means of 
time-domain fitting [9-11].  It was extended to allow the 
calculation of phase-domain transmission line representa-
tions. It is exemplified limiting the analysis to four-port 
networks, which allows the representation of two-phase 
transmission lines. This is not an intrinsic limitation of the 
proposed methodology and the results regarding three-
phase transmission lines will be presented in a future paper. 

The transmission line in study is treated as a linear net-
work. Thus, assuming time-invariance and zero initial con-
ditions, it can be fully characterized in discrete-time do-
main by a linear constant-coefficients difference equation 
[12] given as 
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where p is related to the output, the current ( )ni , and q is 
the number of past terms in the input, the voltage ( )nv .  

 This difference equation of order p, which characterizes 
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the transmission line representation, is used to build an 
overdetermined set of linear equations from computed 
time-domain response of the transmission line. 

The fitting procedure uses the solution of this overde-
termined system to obtain the parameters for the transmis-
sion line representation. However, this does not ensure the 
stability and passivity criteria. Therefore, a set of linear 
constraints is added to the set related to the time-domain 
response fitting. The general formulation is 

,min eDxBAx
x

≤−  (2) 

where A and B correspond to the fitting equations and D 
and e to constraint equations.  The fitting and constraint 
equations are solved simultaneously by means of optimiza-
tion techniques based on Quadratic Programming [13,14]. 
These equations are discussed below.  

III. TRANSMISSION LINE REPRESENTATION: FITTING 
EQUATIONS 

The voltage and current sequences in (1) are considered 
accurate information for deriving a two-phase transmission 
line representation, the determination of kA and kB . These 
voltage and current sequences of length N, considered as 
inputs and outputs, respectively, are taken at the four ter-
minals of the network in study. They are obtained using 
phase-domain models available from transient calculation 
programs. 

To represent a two-phase transmission line, ( )ni  and 
( )nv , in (1), are 4×1 vectors and kA  and kB , the parame-

ters to be calculated, are 4×4 matrices. The poles, as pro-
posed in [9-11], were assumed to be the same which makes 
easier to enforce stability (see Section V). The polynomial 
matrix kA  results in a diagonal matrix, where each non-
zero element is a set of coefficients ka . It is assumed pq = . 
The coefficient 0A  is defined as 4×4 identity matrix. Thus, 
the normalized equation to represent two-phase transmis-
sion line is given as, 

( ) ( ) ( ) ( )( )∑
=

−−−+=
p

k
kk kniAknvBnvBni

1
0 , (3) 

where 0B  has the admittance dimension and the summation 
is computed only from past values. Equation (3) represents 
admittance 0B  in parallel with a current source, accounting 
for the summation term. This form facilitates the integra-
tion of the line representation into transient calculation 
programs. The derivation of the fitting equation and the 
determination of the order p is discussed next. 

A. Parameter Identification ( kA and kB ) 

To determine kA and kB , it is necessary to take the volt-
age and current sequences at the terminals of the two-phase 
overhead transmission line, as shown in Fig. 1, obtained 
from digital simulations. 

 
 
 
 

Fig.1 Two-phase transmission line representation. 

Here, the currents at each terminal were obtained from 
the unit-step voltage response although a different input 
voltage could be used. Due to two-phase line configuration, 
it is not necessary to take voltage and current sequences at 
all ports, considering that some are identical.  

Initially, the ports Ib, IIa and IIb are short-circuited and a 
unit-step voltage is applied at port Ia, taking the following 
sequences: aaIv  (voltage at port Ia), aaIi , abIi , aaIII,i and 

abIII,i  (currents at port Ia , port Ib , port IIa and port IIb, re-

spectively). Applying a unit-step voltage at port Ib, with the 
remaining ports short-circuited, the following sequences 
are taken: bbIv  (voltage at port Ib), bbIi  and bbIII,i  (cur-

rents at port Ib and port IIb, respectively).  
Rewriting (1) in matrix form one gets a set of linear 

equations in the form  
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Each current and voltage sequence is used to build a corre-
sponding convolution matrix. The subscripts in the vari-
ables i and v, in (4), indicate the time index in the se-
quences. Using the matrices I and V obtained from the 
voltage and current sequences, the sets of coefficients ka , 

kb aaI , kb abI , kb aaIII, , kb abIII, , kb bbI  and kb bbIII, are calcu-

lated from fitting equation given as 

BxA = , (5) 

where,  
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and 
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From the solution vector x and the structures of the di-
agonal matrix kA and the matrix kB , the parameters to rep-
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resent the two-phase transmission line are given as 
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where kk bb abIbaI = and kak bb bIII,baIII, = .  

 The fitting equation (5) results in the following dimen-
sions: A is (6N×7p+6), B is (6N) and x is (7p+6). It is used 
N >> p to characterize an overdetermined system, for 
which a solution in the least square sense can be obtained 
for the unknowns. From the calculated kA and kB the accu-
racy can be evaluated and the stability and passivity of the 
representation must be checked. 

B.  Determination of the order p 

An important step to build the matrices I and V, in (4), 
and, as a consequence, the matrix A, in (5), is to calculate 
the best value p which determines the number of variables 
to be calculated and the rank condition of (5).  Two ap-
proaches to determine p were presented in [9-11]. Here, the 
Singular Value Decomposition (SVD) method is used. 

For each matrix I, the upper partition (denoted by dashed 
line) contribute to the rank in (4) with p linearly independ-
ents rows, regardless how large is the value of p, due to 
upper triangles filled with zeros. To complete the rank, the 
remaining N – p lines should have p + 1 linearly independ-
ent rows considering (4) is well conditioned. Therefore, the 
information about the rank of each matrix I, in (4) must be 
searched in its lower partition.   

The SVD analysis is performed in the lower partitions of 
each matrix I corresponding aaIi , abIi , aaIII,i , abIII,i , bbIi  

and bbIII,i . This procedure results in six different values for 

p, where each one is equal to the number of eigenvalues 
that are 104 times larger than the smallest singular value. 
Due to structure of matrix kA , considering only a set of 
coefficient ka , it is used only one value of p to characterize 
the elements of kA and kB . Therefore, it is chosen the 
largest value of p. 

IV. TRANSMISSION LINE REPRESENTATION: 
CONSTRAINT EQUATIONS 

Stability and passivity criteria must be satisfied for a 
passive network. The constraint equations are based on 
application of Z transform to the fitting equation. Thus, 
taking the Z transform of (1) results in 
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Due to structure of the diagonal matrix kA , the opera-
tion to obtain the inverse of ( )zA  is simplified. The poly-

nomial matrix A(z)-1 is diagonal and each diagonal element 
is ( )za1 , where a(z) is a scalar polynomial with coeffi-
cients ak

1. Thus, the rational admittance matrix Y(z) is rep-
resented as 
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From the analysis of (7) and (8), the constraint equations 
are obtained. The method presented to enforce stability and 
passivity is based on linearization and constrained optimi-
zation using Quadratic Programming. 

A. Stability Requirements 

The stability analysis, that in the general case depends 
on the polynomial matrix A(z), is restricted to the analysis 
of the roots of the scalar polynomial ( )za  [11], 

0
0

=∑
=

−
p

k

k
k za , (9) 

This is a consequence of using only one set of coefficients 
related to the output. Therefore, to ensure stability is neces-
sary to have all roots of ( )za  with absolute value less than 
1, so that each root is inside the z-plane unity circle.  

Considering that an unstable solution, from (5), is ob-
tained, a correction ∆xa is calculated to be added to xa  (the 
coefficients ak in the solution vector x)  in order to the ab-
solute values of all roots of a(z) become less than 1. There-
fore, the set of constraint equations related to stability, can 
be formulated as 

UaS zxJ −≤∆ 1  (10) 

where JS is the Jacobian of the absolute values zU (set of  
unstable roots of a(z)) related to the set of coefficients of ak. 
According to [11], each element of JS, can be calculated as  

∑
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B. Passivity Requirements 

The absorbed power, for any exciting complex voltage v, 
by a generic admittance matrix Y =G + jB is given as [8]  

{ } { }vGvvYvP ** ReRe == . (12) 

Where * denotes transpose and conjugate. It can be ob-

                                                           
1 When spasity is used, many values of ak are equal to 0. Then, 

it reduces the computacional time. 
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served in (12) that P is always positive if all eigenvalues of 
G are larger than zero. The passive behavior of the line 
representation is ensured if the matrix G is positive definite 
(PD)[15] and depends on the scalar polynomials ka , kb aaI , 

kb abI , kb aaIII, , kb abIII, , kb bbI  and kb bbIII, , as shown in (8). 

As discussed in Section IV.C below, the stability and 
passivity requirements are enforced separately: first stabil-
ity and then passivity. Therefore, the passivity constraints 
to be included in (2) requires the calculation of corrections 
only for the coefficients bk.  

From a solution given in (5), the admittance matrix, (8), 
is calculated for a normalized frequency range, 0 ≤ ω < π. 
A set of frequencies (ωi) is taken, in which the eigenvalues 
of G are negatives (λi). Corrections ∆xbIaa , ∆xbIab , ∆xbI,IIaa , 
∆xbI,IIab , ∆xbIbb and ∆xbI,IIbb are calculated in such a way the 
eigenvalues of G, (λi), become positive. 

Assuming linearity, the dependence of the eigenvalues of 
G (λi) with each set of bk is established. They are the ele-
ments of the Jacobian matrices related to passivity and can 
be defined as the product of two partial derivatives, for 
each frequency in the set ωi: 

k
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∂ λλ ,  (13) 

In (13), λi represent the eigenvalues of matrix G, bk is a set 
of coefficients and Gmn are the elements of matrix G. 

The first partial derivative in (13) represents the relation 
of the eigenvalues of G to the element of G. This term is 
calculated numerically and must be observed that some 
elements of G are modified simultaneously.  

The second partial derivative in (13) gives the relation 
between the elements of G to the correspondent set of bk . It 
is calculated analytically [11] as 
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The set of constraint equations related to passivity, 
which are included in D and e in (2), is formulated as 

ibPb xJ λ<∆−  , (15) 

where, JPb represents the Jacobian matrix of passivity cal-
culated from (13) and ∆xb is a correction to be added to the 
coefficients bk to enforce passivity. 

C. Procedure for the determination of kA and kB  

Due to non-linearity relations in (2), the procedure to ob-
tain a phase-domain line representation is iterative. The 
fitting and constraint equations are conjugated and submit-
ted to a quadratic programming routine. An incremental 
solution, ∆x, is calculated in each iteration. The final for-
mulation of the problem (2) is  

,min exDhxH
x

≤∆−∆  (16) 

where, the matrix H and vector h are obtained from  A and 
B. The procedure continues until the stability and passivity 

requirements are satisfied. It is divided into two main steps: 
the stability criterion is achieved first and then the passivity 
is enforced. Therefore, in the first step, D and e in (16) are 
calculated using (10) and in the second step using (15). 
This is adopted to facilitate the quadratic routine conver-
gence. The described procedure is adequate to calculate a 
robust two-phase line representation. 

V. RESULTS  

The asymmetric and untransposed two-phase transmis-
sion line, seen in Fig. 2, is used to demonstrate the tech-
nique. 

 
 
 
 
 
 

 

 

Fig.2 Two-phase overhead transmission line. 

Transient simulations, regarding the line in Fig. 2, are 
carried out in PSCAD/EMTDC[16] using the phase-
domain line model.  These simulations serve as reference 
for the comparisons of accuracy when using the phase-
domain line representation based on time-domain fitting 
and are also used to generate the voltage and current se-
quences necessary for the parameter identification. The 
phase-domain transmission line model implemented in 
PSCAD/EMTDC is based on [16-18] and is considered 
one of the most advanced phase-domain line models avail-
able in electromagnetic transients programs. The routines 
for obtaining the discrete-time transmission line representa-
tion and performing the electromagnetic transient calcula-
tions, using the calculated line representation, are devel-
oped in Matlab [19].  

 Voltage and current curves related to transient calcula-
tions, considering the phase-domain line model used in 
PSCAD and the obtained line representation, are com-
pared. As a measure of accuracy (using voltage as exam-
ple), the overall fitting error, Ferror, is calculated as 

pspsmerror VVVF −=  (17) 

where m and ps subscripts refer to the sequences using the 
discrete-time line representation in phase-domain calcu-
lated in Matlab and the PSCAD model, respectively. 

To calculate the parameters kA  and kB  for the line in 
Fig. 2, voltage and current sequences are obtained in the 
way described in Section III.A. The order of the line repre-
sentation is determined based on the SVD approach, as 
seen in Section III.B. The singular values considering the 
currents aaIi , abIi  and abIII,i , respectively, are shown in Fig. 

3. In this analysis the convolution matrices I are calculated 
for a value of p equal to 180.  
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Fig.3 Singular values using SVD approach. 

The curves seen in Fig. 3 are very close. It means that 
the values of the order to represent the self and mutual ad-
mittances for the transmission line are approximately the 
same. The computed value for the order p is equal to 142 
and the parameters kA  and kB  are calculated. It is verified 
that the largest absolute value root of ( )za  is 0.9998, 
which means that the representation is stable. The lowest 
calculated eingenvalue of matrix G is 3.5695e-7, leading to 
a passive representation.  Thus, for the considered case, the 
stability and passivity routines were not required. 

The non-sparse representation used in this work may 
lead to heavy computational effort, thus the concept of 
sparsity can be applied to reduce this demand. The authors 
intend to extend this methodology to the determination of 
sparse representations, for which the enforcement of ro-
bustness is expected to be necessary.  

As a measure of the accuracy of the representation dur-
ing the identification of kA and kB , fitting errors are calcu-
lated comparing the current sequences obtained from (3) 
with the current sequences obtained from 
PSCAD/EMTDC simulations. The largest fitting error 
calculated, based on (17), is 1.1658e-4. Therefore, the re-
sulting kA and kB represent the two-phase transmission line 
quite satisfactorily. 

To further check the transmission line representation 
performance, transient calculations with resistances and 
voltage sources connected to the line terminals are obtained. 
The basic simulation diagram is seen in Fig. 4. The current 
and voltage curves taken at transmission line ports, either 
from the line representation in Matlab and in 
PSCAD/EMTDC, are compared.  A 10 µs time step was 
used. If the time step changes it is necessary to do a refit-
ting. 

To provide a better accuracy analysis, the voltage 
sources shown in Fig. 4 are adjusted to excite differently 
the line and ground modes. The line mode is mainly ex-
cited, when V1 and V2 are unit-step voltages with opposite 
polarities, while the ground mode excitation requires V1 
and V2 with the same polarity. For these simulations, ports 
IIa and IIb are left opened. Figures 5 and 6 show the ob-
tained currents at port Ia and voltages at port IIb, in phase-
domain, respectively. In these figures, LM and GM are 

related to line mode and ground mode excitation, respec-
tively, obtained using PSCADmodel and the Discrete-
Time phase-domain Line Representation (DTLR). Consid-
ering a single pole switching energization, a 60 Hz voltage 
source is used for V1 with the ports Ib and IIa left opened 
and the port IIb short-circuited. Currents at port IIb and 
voltages at port IIa, in the phase-domain, obtained using 
PSCAD/EMTDC and DTLR models, are shown in fig-
ures 7 and 8.  It can be verified from the results shown in 
figures 5 to 8 that the currents and voltages obtained from 
transient calculations using the DTLR present good accu-
racy. 

 
 
 
 
 
 
 
 
 
 

 
Fig.4 Electromagnetic transient calculations. 
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Fig.5 Current curves at port Ia. 
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Fig.6 Voltage curves at port IIb. 
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Fig.7 Current curves at port IIb-60Hz.   
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Fig.8 Voltage curves at port IIa-60 Hz. 

VI. CONCLUSIONS 

The paper has presented a methodology for deriving 
phase-domain transmission line representation based on 
time-domain fitting. Routines to enforce stability and pas-
sivity of the representation were formulated and included in 
the fitting procedure. The fitting and constraint equations 
are combined and submitted to quadratic programming 
routines. The procedure is iterative, due to non-linearities, 
and a solution is obtained when the fitting, stability and 
passivity conditions are satisfied. 

To demonstrate the performance of the derived represen-
tation, transient calculations regarding a two-phase asym-
metric and untransposed transmission line are used. Volt-
ages and currents at the transmission line ports are com-
pared for transient simulations using the discrete-time 
transmission line representation and phase-domain line 
model in PSCAD/EMTDC. The results presented good 
agreement. The authors intent to extend the methodology to 
a three-phase transmission line representation and also to 
the derivation of sparse representations. 
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