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Abstract – This paper presents a simple slant wire model for 
lightning surge analyses using accurate correction techniques 
to decrease error caused by a numerical difference used 
around a slant wire in FDTD method. 

The proposed method is to apply an implicit scheme 
around a diagonal wire, and turn the first order finite differ-
ence into the second order.  The numerical formulation of the 
proposed method is explained, and the comparison between 
slant wire models and a measured result for real applications 
is shown. 
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I. INTRODUCTION  

Very fast surge phenomena in a three dimensional struc-
ture, which includes surge propagation in a transmission 
tower and in a tall building, can not be simulated by  an 
existing surge simulator such as EMTP and ATP [1] accu-
rately, because the distributed-parameter circuit theory in 
those simulators assumes the plane-wave propagation.  
Therefore, such simulations are aboundingly carried out by 
using the FDTD ( Finite-Difference Time-Domain ) 
method in these days [2,3].  The FDTD method has been 
applied to many cases of antenna analyses [4] and has been 
yielded many good results.  However, the method has not 
been applied to power system simulations very much be-
cause of enormous storage capacity and huge calculation 
time.  In these days, those problems about computing 
power are in the process of being solved, some FDTD ap-
plications to the part of a power system are introduced 
[5,6].   

The FDTD method is based on Maxwell’s equations.  
Maxwell’s equations consist of Faraday's and Ampere's 
laws which mean electric and magnetic rotations respec-
tively, those lows are discriminated in time dimension and 
in 3-D space.  Behavior of electromagnetic fields is ana-
lyzed numerically according to information from geomet-
ric arrangements and shape of objects, and electric features 
such as conductivity, permittivity and permeability.  When 
the FDTD method is applied for surge simulations of 
power systems, there are some problems.  One of those 
problems is that a slant wire not existing on a grid can not 
be modeled correctly because the analysis space is broken 
up into cuboidal FDTD cells.  To solve these problems, 
Subcell method [3] and other methods [7- 9] are proposed.  
However, the propagation time and so on have compara-
tively big error when the existing slant wire model is used 

for a surge simulation.  
This paper presents slant wires correctly modeled by 

means of an implicit scheme for a FDTD surge simulation, 
and the proposed method turns the first order finite differ-
ence into the second order.  The proposed method makes it 
possible to model arbitrary slant wires which are parallel to 
one of the possible three planes of the grids composing a 
FDTD cell.  When the magnetic fields, whose direction is 
perpendicular against the direction of the slant wire and 
which are located around the slant wire, are calculated, the 
path of the rotating integration around the slant wire is 
changed to the path including the slant wire.  The electric 
fields, which are located on the grids passing the slant wire, 
are compensated by an adjacent electric field.  Furthermore, 
the magnetic fields located on the center of the surface 
which is vertical against the surface including the slant 
wire are recalculated.  To evaluate the proposed method, 
the calculation results with the proposed method are com-
pared with the measured result[10] and the calculated re-
sult with a wire model on FDTD grids. 

In this paper, A self-produced FDTD program [11] de-
veloped for general purpose surge simulation using the 
FDTD method is used. 

 
Fig.1 Configuration of electric and magnetic fields in a cell 

II. FDTD EQUATIONS  

Differential forms of Maxwell’s equations to formulate 
the FDTD equations can be shown as follows.  
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where : E [V/m] is a vector of electrical field,  H [A/m] is 
a vector of magnetic field, D [C/m2] is a vector of electric 
flux density, B [T] is a vector of magnetic flux density and 
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J [A/m2] is current density.  (1) shows Ampere’s law and 
(2) shows Faraday’s law of electromagnetic induction. 

Yee’s algorithm [2, 3] is applied to (1) and (2) to differ-
entiate centrally on time dimension and on the 3-D cell 
shown in Fig. 1.   The formulas of the fundamental FDTD 
method can be derived as follows. 
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where : µ is permeability, ε is permittivity, ρ is conductiv-
ity.  Electric and magnetic fields to x direction have been 
shown as above,  the one to y and z directions can be de-
rived similarly as (3) to (7).  The electric and magnetic 
fields are calculated alternately at intervals of  ∆t /2 where 
∆t is a discrete time interval. 

III. SIMPLIFIED SLANT WIRE MODELS 

The proposed method makes it possible to express a 
slant wire on an arbitrary surface composing a FDTD cell 
shown in Fig. 1.  In this case, two types of slant wire 
shown in Fig. 2 (a) and (b) can be thought of.  Fig. 2 (a) 
shows that a slant wire goes across a grid to the opposite 
grid, and Fig. 2 (b) shows that a slant wire goes across a 
grid to the adjacent grid.  Two electric fields on the grid 
where a slant wire goes across are allocated on both hands 
of intersections between the slant wire and grids, such as  

 
Fig.2 Configuration of a diagonal wire 

electrical fields on grids AB, AH, EF and FG in Fig. 2 (a), 
and electrical fields on grids AB, BC, EG, AG in Fig. 2 (b).  
When the magnetic fields adjacent to the slant wire such as 
Hz( i+1/2, j+1/2, k ) and Hz( i+1/2, j-1/2, k ) in Fig. 2 (a), 
and Hz( i+1/2, j+1/2, k ) and Hz( i+1/2, j+3/2, k ) in Fig. 2 
(b) are calculated, the common paths of integration 
BCDEB in Fig. 2(a) and ACDEA in Fig. 2(b) are changed 
to the path including the slant wire such as ABCDEFA in 
Fig. 2 (a) and BCDEFB in Fig 2 (b) respectively. 

In a simplified slant wire model, electric fields on the 
grids which the slant wire goes across are approximated by 
adjacent electrical fields in the parallel direction with the 
approximated electrical fields. In a common FDTD method, 
one electric field is allocated on one grid, however, two 
hypothetical electric fields are allocated on one grid which 
the slant wire goes across to model the slant wire as above.   

In the example shown in Fig. 2 (a), we give a full detail 
of above theories as following.  Newly allocated electric 
fields are as follows.  
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Electric fields adjacent to the slant wire apart from (8) and 
(9) are calculated.  As the magnetic field Hz( i+1/2, j-1/2, 
k ) calculated along the path ABCDEFA of integration is 
equivalent of the one calculated along the path BCDEB, 
Ex( i+1/2, j, k ) which is an electrical field on BE can be 
calculated from the following equation. 
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It should be noted that the above simplified slant wire 
model has been derived  by use of an approximation that 
the flux penetrating ABEFA is zero.  This approximation 
make the slant model in FDTD method stable, but the 
model has comparatively large error. 

The magnetic field Hz( i+1/2, j-1/2, k ) is calculated 
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along the path ABCDEFA of integration similarly as the 
derivation of (10). 
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Hz( i+1/2, j-1/2, k ) is also calculated along the path 
AFGHA of integration. 

The magnetic field Hx( i, j+1/2, k+1/2 ) on the surface 
which is vertical to the surface including the slant wire is 
calculated from  Ey( i, j+AB/2∆y, k ) and Ey( i, j+1-
AH/2∆y, k ) which have already been recalculated in (8) 
and (9) respectively.  
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Hx( i, j+1/2, k-1/2 ), Hx( i+1, j+1/2, k-1/2 ) and Hx( i+1, 
j+1/2, k-1/2 ) can also be calculated similarly as Hx( i, 
j+1/2, k+1/2 ) in (12).  

This simplified slant wire model has some advantages 
and disadvantages.  If above (8) to (12) are used to model 
a slant wire, the flux penetrating the surface ABEF is zero.  
Therefore, such approximation becomes one of the sources 
of error even though the magnitude of error depends on the 
area of ABEF.  Only truncation error of over second order 
arises from the rotating integration along the path of 
BCDEB in Fig. 2 (a) to model wire on FDTD grids.  How-
ever, the y directional difference of Ex causes truncation 
error of first order when Hz( i+1/2, j-1/2, k ) of (11) is cal-
culated along the path of ABCDEFA in Fig. 2 (a) to model 
the simplified slant wire.  The advantage of this simplified 
slant wire model is good numerical stability when a lot of 
slant wire are used in a FDTD simulation space.  The de-
tail slant model is proposed in the next chapter to solve 
those problems.  

IV. DETAILED SLANT WIRE MODEL  
WITH IMPLICIT SCHEME  

The proposed detailed slant wire model is explained 
here according to Fig. 2 (a).  When the segment AF is a 
conductor, the magnetic flux penetrating the triangle JAL 
is equal to the amount of the magnetic flux penetrating the 
triangle KFL, but each magnetic flux is in the opposite 
direction.  To represent conductor AF in the analysis space, 
an assumption that Hz( i+1/2, j-1/2, k ) calculated from the 
path ABCDEFA of integration is equivalent to that calcu-
lated from the path ABCDEKJA of integration. 

The following magnetic field Hz( i+1/2, j-1/2, k ) is de-
rived from applying Faraday’s law to BCDE. 
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The second term of right side member fulfills the follow-
ing condition. 
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As Hz( i+1/2, j-1/2, k ) calculated from the path of AB-
CDEFA is equivalent to that of the path of ABCDEKJA, 
the following (14) can be derived from Faraday’s law by 
means of the central difference of yEx ∂∂  and xE y ∂∂ .  

The magnitude of Ex on KL is equivalent to that of Ex on 
KJ, and each electric field is in the opposite direction.  
Therefore, the integration of Ey on JA is equivalent of that 
of Ey on KF. 
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From above (13) and (14), Ex( i+1/2, j, k ) can be derived 
as follows. 
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 (15) 
When (14) was derived, the central difference in time 

dimension was applied to yEx ∂∂  and xE y ∂∂  of  the fol-

lowing Faraday’s law.  
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truncation error of first order was used. 
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The derivation of (17) can be proved in the appendix A. 

To make truncation error of first order into that of sec-
ond order, (B-4) in the appendix B is applied to (16).  
Therefore, we can derive the following method to deal 
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with a slant wire without truncation error of first order. 







 −+−






 −+=






 −+

−+
kjiKkjiHkjiH z

n

z

n

z ,
2
1,

2
1,

2
1,

2
1,

2
1,

2
1

3
2
1

2
1  

( )EKyxEKy
y

ABkjiE

y
y

EFkjiExkjiE

y
EKyx

n
y

n
y

n
x

+∆∆+∆







∆

+





 −−

∆







∆

+





 −++





∆





 −+









∆

+∆∆
×

2
1,

2
1,

1,
2
1,1,1,

2
1

1

1  (18) 










∆







 −++






 −+−






 −+

× 2

,3,
2
1,2,

2
12,1,

2
1

y

kjiEkjiEkjiE n
x

n
x

n
x

 

In other words, when a slant wire can be modeled for a 
surge analysis, (18) is used in stead of (14).  Hx( i+1/2, 
j+1/2, k ) can be derived similarly. 

IV. SIMULATION RESULTS AND MEASUREMENTS   
IN HORIZONTAL CONDUCTOR SYSTEM  

Fig. 3 shows a horizontal conductor system, which is 
one of the fundamental cases to learn surge propagation on 
a conductor.  In Fig. 3, a wire with length 4 m is placed 
above a copper plate at height 0.6 m.  The horizontal con-
ductor is excited by a pulse generator (PG) of which the 
internal resistance is 50 Ω, and connected via a vertical 
conductor.  Fig. 4 shows a source voltage wave form ap-
proximated from a measured open voltage of PG.  In this 
configuration, voltage and current waveforms at the send-
ing end were measured [10], and the FDTD simulations 
were also carried out.  In the simulations where the hori-
zontal conductor was modeled on the FDTD grids as a 
configuration of Fig. 3 (b), the dimensions of the analysis 
space were 6 m, 2 m and 2 m in the x, y and z directions 
respectively,  and the space step was 5 cm.  In the simula-
tions where the horizontal conductor was modeled out of 
the FDTD grids as a configuration of Fig. 3 (c), the dimen-
sions of the analysis space were 4 m, 4 m and 2 m in the x, 
y and z directions respectively, and the space step was 5 
cm.  All the six boundaries were treated as the second-
order Liao’s absorbing boundary.  The resistivity of the 
copper plate is 1.69×10-8 Ωm.   

Fig. 5 (a), (b) and (c) show the measured and calculated 
waveforms of voltage at the sending end, and the calcu-
lated results were derived in cases of the wire model on 
grids, the simplified slant wire model and the detail slant 
wire model.  Fig. 6 (a) shows the comparison of current at 
the sending end between the measured result and the cal-
culated result in the case of the wire model on grids.  Fig. 
6 (b) shows the comparison between the calculated result 
with the wire model on grids and that with a simplified 
slant wire model.  Fig. 6 (c) shows the comparison be-
tween the calculated result with the wire model on grids 
and the calculated result with the detailed slant wire model.  
From Fig.5, the calculated voltage waveforms with the 
proposed slant wire models at the sending end agree well 
with that with the wire model on grids.  It should be noted 
that the wire model on grids is most accurate in FDTD 
simulations.  The calculation results of current at the send-
ing end in the case of  the proposed slant wire models 

agree well with that with the wire model on grids.  In Ta-
ble 1, the comparisons of those propagation times and 
those peek values of current are shown.  Table 1 shows 
that the proposed detailed slant wire model is more accu-
rate than the proposed simplified one.  However, the pro-
posed simplified slant wire model is also accurate enough 
to be applied to lightning surge simulations. 

All the calculation results of current are compensated by 
the following (19), (20) and (21) to take the rise time (2 
ns) of CT ( Current Transformer ) into account.  
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(a) Horizontal conductor system 

 
(b) Case of the wire on FDTD grids  (c) Case of the slant wire 

Fig.3 Example case 

Table 1 Comparisons of the propagation time and the peak value 
of current 

 Propagation 
time [ns] 

Peak value of 
current [A] 

Measured result 29.39 0.5415 
Wire on FDTD grids 28.81 0.5464 

Simplified slant wire 29.97 
 (+4.03%) 

0.5150 
 (-5.75%) 

Detail slant wire 29.58 
 (+2.67%) 

0.5386 
 (-1.43%) 

* The percent expressions are comparisons on the basis of the 
wire model on FDTD grids 

x

y 4 m
4 m

PG v

i 0.6 

4 m 

Copper Plate 
x

y z
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Fig. 4 PG voltage waveform 
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 (a) Measured result and calculated result using a wire on grid 
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(b) Calculated result using a wire on grid and calculated result 

using a simplified slant wire  
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(c) Calculated result using a wire on grid and calculated result 

using a detail slant wire  

Fig. 5 Comparison of measured and calculated results of voltage 
waveforms at the sending end 

V. CONCLUSIONS 

In this paper, simplified and detail slant wire models 
with an accuracy correction technique to decrease error 
caused by the slant wires in the FDTD simulation have 
been proposed to generalize FDTD surge analysis pro-
grams.  The comparisons with the measured result and the 
calculation result with a wire model on grids on a horizo-  
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(a) Measured result and calculated result using a wire on grid 
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(b) Calculated result using a wire on grid and calculated result 

using a simplified slant wire  
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(c) Calculated result using a wire on grid and calculated result 

using a detail slant wire  

Fig. 6 Comparison of measured and calculated results of current 
waveforms at the sending end 

ntal conductor system have shown to prove the accuracy of 
the proposed methods.  As the proposed detail slant wire 
model adopts an implicit scheme around a slant wire, and 
allows for the distorted path of integration around a slant 
wire, error of the propagation time and the peak value of 
current becomes smaller than that of another slant wire.  It 
has been shown that the simplified slant wire model is 
more stable than the detail model when a lot of slant wires 
are used in a FDTD simulated space.   

The proposed methods make it possible to analyze sev-
eral power systems including several physical relationships 
of wires in 3-Dimentions. 

VI. APPENDIXES 

A. Derivation of (17) 

The following Taylor series can be shown for the deri-
vation of (17). 

Measured result 

Wire on FDTD grids 

Simplified slant wire 

Wire on FDTD grids 

Detailed slant wire 

Wire on FDTD grids 

Measured result 

Wire on FDTD grids 

Wire on FDTD grids 

Simplified slant wire 

Wire on FDTD grids

Detailed slant 
wire
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where: l = 1+2EK/∆y.  From (A-1) - (A-2), the following 
(A-3) can be derived 
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   (A-3) 
where: δ is Kronecker’s delta.  (A-3) shows that (14) and 
(15) have truncation error of first order.   

B. Elimination of truncation error of first order 

The following proposed method makes truncation error 
of first order into that of second order.  The newly defined  
Taylor series can be shown as: 
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From (B-1) and (B-2), the following equation can be de-
rived. 
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From (A-3) + (B-3), 
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From the comparison between (A-3) and (B-4),  the trun-
cation error of first order in (A-3) can be eliminated in (B-
4). 
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