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Abstract – This paper complements a companion paper in 
this same Conference that presents techniques for an accu-
rate and efficient latency exploitation of electric networks 
using time-domain simulators [1]. However, latency should be 
exploited with care, since it is generally not true that individ-
ual system components may be characterized as being either 
slow or fast. In this paper, a methodology based on the calcu-
lation of the participation matrix in order to verify if the net-
work partitioning is adequate for latency exploitation is pre-
sented. Since the participation matrix is a combination of the 
right and left eigenvectors associated with each mode of the 
system, it is not dependent on the scaling and units associated 
with the state variables. Simulation results show networks in 
which latency exploitation provides very accurate results and 
also in which it presents some clear limitations.  

This paper presents a simple algorithm for the calcula-
tion of the dominant poles within the subnetworks that 
have been separated for latency exploitation. This method 
is based on the evaluation of the participation matrix P [8] 
in order to identify the relationship between the states and 
the modes of a particular network. 

Section II of this paper describes the method to evaluate 
the participation matrix of a network. In section III, the 
eigenanalysis proposed, which is based on a continuous-
time description of the electric network, is shown to be 
valid for the discrete-time system as well. In section IV, 
simulations are presented for cases where the network par-
titioning and corresponding latency exploitation yields 
situations where results are very much in agreement with 
the traditional single step EMTP solution and also where 
the results are not as accurate as one might expect it to be. 
Finally, in section V the conclusions are stated. Also, in 
the appendix, a systematic procedure to assign state vari-
ables in electrical networks is described. 

Keywords – Latency exploitation, Network eigenanalysis, Inte-
gration rules, Electromagnetic transients, Participation matrix. 

I. INTRODUCTION 

In a companion paper [1] presented at this same Confer-
ence, techniques for an efficient and accurate latency ex-
ploitation of electric network solutions were presented. 
Latency is related to the possibility of numerically solving 
the differential equations governing the behaviour of elec-
tric networks with dual or multiple integration steps. The 
term multirate simulation is also commonly used in the 
literature to indicate this type of analysis [2,3]. It differs 
from the traditional EMTP type of solution where a single 
time step is used for the simulation of the complete net-
work [4]. It should be stressed out that the latency tech-
nique proposed in [1] is different from the variable single 
time step method [5,6]. While the latter simply exploits the 
latency property by varying the time step through some 
mechanism that detects the fact that the given signal value 
is not changing appreciably, the former is a truly multirate 
simulation in the sense that different integration steps are 
used for the transient simulation of an electric network at 
any given time. 

II. PARTICIPATION MATRIX DETERMINATION 

When modelling a system by its state equations, it is 
straight forward to compute the system’s eigenvalues. La-
tency may then be efficiently exploited if the state vari-
ables of the slow subnetwork are virtually independent 
from the eigenvalues of the fast subnetwork. In a complex 
system, the correct choice of the state variables is not an 
easy task. Most of the times, the choice of inductor cur-
rents and capacitor voltages do not lead to an independent 
set of state variables. Appendix A presents a systematic 
procedure for assigning state variables and writing the 
dynamical equations of a network. 

The simple determination of the eigenvalues of the elec-
trical network, however, is not enough to establish a clear 
definition on whether latency exploitation should guaran-
tee an accurate transient solution of the network. The prob-
lem is that the rate of change of each state variable is a 
linear combination of all the eigenvalues. Although latency exploitation may lead to very accurate 

results as reported in [1], its application to the solution of 
general RLC networks should be analyzed carefully. Re-
sults will be far more accurate if each of the subsystems 
could be characterized as being either slow or fast, i.e., if 
the dominant eigenvalues in each of the subsystems were 
fairly independent. However, it is often not true that indi-
vidual system components can be characterized in an abso-
lute way as being either slow or fast [7]. 

The eigenvectors associated with each mode give an in-
dication of by how much these modes participate in each 
state variable. The n-column vector φi which satisfies 

 

iiA iφ φλ=  (1) 
 

is called the right eigenvector of the state matrix A asso-
ciated with the eigenvalue λi. 

Similarly, the n-row vector ψi which satisfies 
  

1 



International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA 
 

ii A λ iψ ψ=  (2) 2
 

1
i

i
i

z
t z

λ
∆

−=
+

 (7) 1
 

is called the left eigenvector of the state matrix A asso-
ciated with the eigenvalue λi.  

where the set of λi are the continuous-time and the set of 
zi are the discrete-time eigenvalues. 

 

The matrices of right and left eigenvectors are respec-
tively given by 

 

[ ]1 2 nΦ φ φ φ= …  (3) 
 

1 2
TT T T

nΨ ψ ψ ψ=  … 
  (4) 

In case the backward Euler (implicit Euler) rule is used 
in the discretization of the differential equations, the trans-
formation relating continuous-time and discrete-time ei-
genvalues is given by 

 

 

As mentioned in [8], one problem in using right and left 
eigenvectors individually for identifying the relationship 
between the states and the modes is that the elements of 
the eigenvectors depend on units and scaling associated 
with the state variables. A matrix called the participation 
matrix P can be evaluated as a measure of the association 
between the state variables and the modes. 

The participation matrix P is given by 
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However, as indicated in [9], the eigenvectors of the 
continuous and discrete-time systems are the same. This 
results from the fact that the state space matrix is also 
mapped from continuous to discrete-time. 

In continuous-time, the state equation of a system is 
written as 

 

( ) ( ) ( )t tx Bu= +�  (9) 
 

For a zero-input system 
 

( ) ( )tx Ax=�  (10) 
 

In discrete-time the state equation of the same system 
also with a zero-input can be written as 

 

( ) (t t tdx A+ =∆  (11) 
 

where  

where Ad is the state space matrix in discrete-time. φki = kth
  entry of the right eigenvector φi  

The relationship between Ad and A for the trapezoidal 
and backward Euler rule are respectively given by [9] 

ψik =  kth entry of the left eigenvector ψi 
 

The element pki = φkiψik is termed the participation factor 
and measures the relative participation of the kth state vari-
able in the ith mode, and vice versa. 

 

12 2
t tdA I A I

−
  = − +  
  ∆ ∆

A


 (12) 

By determining all the participation factors it is possible 
to verify which modes have most influence in each of the 
state variables and therefore conclude if the network parti-
tioning employed for latency exploitation will result in 
accurate results or not. 

 

11 1
t tdA I

−
= −
 ∆ ∆

A  (13) 
 

where I is the identity matrix. 
 

The complete proof that the eigenvectors of the continu-
ous and discrete-time systems are the same can be found in 
[9]. Since the eigenvectors are the same, the participation 
matrix P remains unchanged and it is possible to extend 
the conclusions from calculating the participation factors 
of the continuous-time system to the discrete-time equiva-
lent. 

III. RELATIONSHIP BETWEEN THE CONTINUOUS-TIME 
AND THE DISCRETE-TIME EIGENANALYSES 

If the electrical network is discretized for a time-domain 
simulation using an EMTP type of program, the eigenval-
ues that should be calculated in order to apply the ei-
genanalysis proposed in the previous section are the eigen-
values of the equivalent discrete-time system. However, it 
is much easier to determine the eigenvalues of the continu-
ous-time system. The question that arises here is if it 
would be correct to perform the eigenanalysis of the net-
work in its continuous time-domain form and extend the 
conclusions to the discrete time-domain form. We will see 
that this is indeed the case. 

IV. SIMULATION RESULTS 

The lumped network shown in Fig. 1 will be tested for 
latency suitability. This network is a good candidate for 
latency exploitation since inductor L1 and capacitor C1 
have a resonant frequency ten times lower than inductor L2 
and capacitor C2. This is the same network presented in the 
companion paper [1]. It is true that the eigenvalues of the discrete-time system 

are not exactly the same as the eigenvalues of the continu-
ous-time system. They are related, however, by the well 
known bilinear transformation, when the differential equa-
tions are discretized with the trapezoidal rule. 
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From the participation matrix, it is easily verified that 
eigenvalues λ1 and λ2 only have a significant contribution 
on state variables x3 (voltage across capacitor 2) and x4 
(current through inductor 2). On the other hand, eigenval-
ues λ3 and λ4 only have a significant contribution on state 
variables x1 (voltage across capacitor 1) and x2 (current 
through inductor 1). Therefore the time response of state 
variables x1 and x2 (on the slow subnetwork) are virtually 
independent of eigenvalues λ1 and λ2 (fast modes). It is 
then possible to exploit latency for a very accurate time-
domain simulation of this circuit according to the network 
partitioning proposed in Fig. 1. 

fastslow

Vs

L1 = 1µH

C1 = 100µF

x1

C2 = 1µF

L2 = 1µHR = 0.1Ω

x3

x2 x4

t = 0

 
Fig. 1: Lumped circuit for latency exploitation 

 
The simulation results for this circuit have been pre-

sented in [1], but are repeated below for completeness. The 
three methods adopted for the time domain simulation are: 

Following the state variables identification procedure 
described in the appendix, the normal tree is identified by 
the heavy lines in Fig. 1. The voltages across the capaci-
tors in the normal tree and the current through the induc-
tors in the links are assigned as state variables, therefore 
resulting in four state variables, also depicted in Fig. 1. 

Method 1: Standard procedure using a small time step 
for the complete network solution: ∆t = 0.2µs (normal 
EMTP solution). 
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 (14) 

Method 2: Dual step sizes: ∆t = 0.2µs for the fast part 
of the circuit and ∆T = 2.0µs for the slow part (latency 
exploitation). 

Method 3: Large time step for the complete network so-
lution ∆T = 2.0µs (normal EMTP solution). 

 

The zero-input state equation is written as 
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Figure 2 shows the voltage across the “slow” capacitor 
for the three methods proposed, while Fig. 3 shows the 
voltage across the “fast” capacitor for the same three meth-
ods. 

 

 

Replacing the parameters by their actual values given in 
Fig. 1, the following eigenvalues are obtained: 
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After obtaining the right and left eigenvectors associated 
with each eigenvalue using (1) and (2), the participation 
matrix may be calculated using (5) and (6): 

 

Fig. 2: Voltage across the “slow” capacitor 
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Fig. 3: Voltage across the “fast” capacitor  
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The voltages across the “slow” and “fast” capacitors are 
accurately predicted by method 2, even though the integra-
tion step of the slow subcircuit is ten times larger than the 
integration step of the fast subcircuit since the participation 
factors of the “fast” modes on the “slow” state variables 
are very small. Latency exploitation therefore, produces 
very accurate results. 
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As before, the participation matrix may be obtained: 
 

By slightly modifying the circuit in Fig. 1 by adding an 
additional LC cell, as shown in Fig. 4, a case where la-
tency exploitation presents restrictions can be observed. 

The resonant frequency of the additional LC cell at the 
right-side of the figure is equal to that of the “slow” LC 
cell of the previous circuit. It is assumed that the new cell 
has a “slow” behaviour, so that the partitioning adopted in 
Fig. 4 is valid. We will verify, however, that this assump-
tion is not correct. As before, assigning the voltages across 
the capacitors in the normal tree and the currents through 
the inductors in the links as state-variable: 
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The zero input state equation is written as 
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From a careful analysis of the participation matrix, it can 
be observed that no clear independence between fast and 
slow behaviour can be verified for some state variables. 
This is the case, for example, of state variable x6 which is 
equally dependent on the pair of eigenvalues λ1 and λ2 

(very fast) and the pair λ5 and λ6 (slow). Latency exploita-
tion in the way proposed in Fig. 4 would then not guaran-
tee results as accurate as in the previous circuit. 

The same three methods employed for the time-domain 
simulation of the previous network are repeated here. 
Since the analysis of the participation matrix has indicated 
that inductor 3, which is supposedly located in a “slow” 
part of the network, is actually very dependent upon the 
eigenvalues with the highest oscillating frequency, it is 
very illustrative to present the voltage across inductor 3, as 
shown in Fig. 5. 

 

Replacing the parameters by their actual values given in 
Fig. 4, the following eigenvalues are obtained: 
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 Fig. 4: Modified lumped circuit for latency exploitation 

Fig. 5: Voltage across inductor 3 (supposedly “slow”) 
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Figure 5 clearly shows the strong dependence of the 
voltage across inductor 3 on the fast modes. The assump-
tion that inductor 3 is located in a “slow” part of the net-
work is not very accurate. However, latency might still be 
used in this case to track the average value of the signal. 
Even if the high frequency components were very slowly 
damped, the proposed latency technique would still be 
capable of following the slow modes associated with this 
variable accurately, since latency acts as a low-pass filter. 
Latency exploitation would of course fail if in a particular 
simulation, obtaining the average values of a state variable 
is not sufficient 
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APPENDIX – ASSIGNING STATE VARIABLES TO A 
GENERAL RLC LUMPED NETWORK  

The state variable description of a system is an alterna-
tive to the input-output description, which is applicable 
only when the system is initially relaxed.  

If a system contains “p” inputs and “q” outputs, an n-
dimensional linear and time invariant state variable de-
scription is of the form 

Through the concept of the participation matrix, a gen-
eralized latency methodology that allows an automatic and 
efficient network partitioning may be developed. Different 
network partitionings may be performed and the most suit-
able for latency exploitation would be the one which par-
ticipation matrix indicates that state-variables predomi-
nantly fast or slow have been decoupled. 

 

( ) ( ) ( )
( ) ( ) ( )
t t

t t

x Ax Bu

y Cx Du

= +
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� t

t
 (A.1) 

 

where x(t) is the state vector of the system and y(t) is the 
output. 

 

Matrices A, B, C, and D are respectively of “nxn”, “nxp”, 
“qxn”, and “qxp” dimensions. 
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works, a systematic procedure for assigning state variables 
and writing the dynamical equations may be described. 
This procedure is extracted from [10]. REFERENCES 

It is well known that if all the state variables of an RLC 
network are known, then the behaviour of the network is 
uniquely determinable for any input. 
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The procedure described here requires the definition of 
tree, link, and cutset of a network. A tree of a network is 
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defined as any connected graph (connection of branches) 
containing all the nodes but not any loops. 

Every branch in a given tree is called a tree branch. 
Every branch not in the tree is called a link. A cutset of a 
connected network is any minimum set of branches such 
that the removal of all the branches in this set causes the 
remaining network to be unconnected. With respect to any 
fixed tree, every link and some tree branches form a 
unique cutset called a fundamental cutset. With these defi-
nitions in mind, the procedure for assigning state variables 
is as follows: 

 
1) Choose a tree called a normal tree. The branches 

of the normal tree are chosen in the following priority 
order: voltage sources, capacitors, resistors, inductors, 
and current sources. Hence, a normal tree consists of 
all the voltage sources, the maximum number of per-
missible capacitors, the resistors, and finally the mini-
mum number of inductors. Usually, it does not contain 
any current source. 

2)  Assign the charges or voltages of the capacitors 
in the normal tree and the flux or current of the induc-
tors in the links as state variables. The voltages of the 
capacitors in the links and the currents of the inductors 
in the normal tree do not need to be chosen as state 
variables. 

3) Express the branch variables (branch voltage and 
current of all the resistors, the capacitors in the links, 
and the inductors in the normal tree) in terms of the 
state variables and the inputs by applying the 1st or 2nd 
Kirchhoff laws to the fundamental loops or cutsets of 
these branches. 

4) Apply the 1st or 2nd Kirchhoff laws to the fun-
damental loop or cutset of every branch that is as-
signed as a state variable. 


