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Abstract – An algorithm for the calculations of low frequency 
transformer transients such as inrush current and 
ferroresonance is developed in this paper. The transformer 
nonlinearity is represented by nonlinear magnetizing 
inductance in parallel with nonlinear core loss resistance. 
Nonlinear curves: magnetizing current – flux linkage and 
core loss current – supply voltage are piecewise linearized. 
The stiff differential equation system, which describes 
transients of electrical circuit, is solved by the A and L-stable 
backward differentiation formulas numerical method. It is 
shown that the BDF method completely eliminates numerical 
oscillation events. Simulation results of the developed 
algorithm are compared with the results obtained by 
Matlab/Power System Blockset and also with field 
measurements during a transformer energization. The 
proposed algorithm could be successfully applied on 
numerical calculations of transients with some other 
nonlinear elements such as surge arresters, power electronic 
elements, etc.  

Keywords – transformer, stiff differential equations, inrush 
current, trapezoidal rule, backward differentiation formulas and 
stability of numerical methods 

I. INTRODUCTION 

Transformer nonlinearity is represented by nonlinear 
magnetizing inductance in parallel with nonlinear core loss 
resistance [1], [2]. This model is reasonably good for low- 
frequency transformer transients such as inrush current and 
ferroresonance [1], [3], [4]. It is also used in harmonic 
loadflow calculations [5]. Nonlinear curves: magnetizing 
current – flux linkage, fig. 1.a, and core loss current – 
supply voltage, fig. 1.b, are piecewise linearized. Slopes of 
some linear regions define inductance and resistance series 

1mL , 2mL ,…., mNL  and 1mR , 2mR ,..., mNR . These curves 
are obtained by standard no-load transformer tests [1], [2]. 
During transients, these inductances and resistances are 
being switched on/off, depending on absolute value of the 
main magnetic flux linkage, fig. 2.  
The magnetizing current mki  and core loss current Rmki  of 
the k-th linear region,  are calculated by equation [6]: 

( )∑
−

= +








−+=

1k

1i 1mimi
si

mk
mk L

1
L
1

L
1i ΦΦΦ sgn  (1) 

( )∑
−

= +








−+=

1k

1i 1mimi
si

mk
Rmk R

1
R

1
dt

d
R

1i ΦΦω
Φ sgn  (2) 

N,...,2,1k = , N-total number of piecewise regions. 

 
     a) 

 
     b)  

Fig. 1.   a) Nonlinear curve of core inductance 
                   b) Nonlinear curve of core loss resistance 

 
 
 
 
 
 
 
 
 

Figure 2. Equivalent transformer model  

II. TRANSFORMER ENERGIZATION 

Fig. 3. shows the simplified model during transformer’s 
energization. The network is represented by the ideal 
voltage source ( ) tEte m ωcos= , with the corresponding 
network impedance LjRz ω+= . Capacitor C  represents 
a power line, cable, shunt filter capacitance, etc. At the 
moment 0Tt = , transformer energization occurs. 
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Figure 3. Transformer energization - equivalent model   
  
When the magnetic flux during transient exceeds the first 
critical value 1sΦ  (which corresponds to a transformer 
voltage that exceeded the value of 1s1sU Φω= ), the 
inductance 1mL  and the resistance 1mR  should be 
connected and the inductance 2mL  and the resistance 2mR  
disconnected. If the magnetic flux exceeds the second 
critical value 2sΦ , the inductance 2mL  and the resistance 

2mR  will be switched off and the inductance 3mL  and the 
resistance 3mR  will be switched on, etc. The operating 
point will move throughout the regions defined by mkL  
and mkR , N,...,2,1k = , moving up or down depending on 
the absolute value of the instantaneous magnetic flux and 
that magnetic flux actually determines the criteria for the 
movement within the region. The whole sequence of 
movements from one region to another occurs at the same 
moment when the absolute values of the magnetic flux 
(voltage) take the values defined by the orders 1sΦ , 

2sΦ ,..., sNΦ  and 1sU , 2sU ,..., sNU . This gives an idea of 
organizing the algorithm, into which it introduces the 
indicator of direction that will continuously determine the 
position of the operating point. Based on relations (1)-(2), 
behavior of the circuit in the fig. 3. is described by 
equation in the state space form on the k-th linear region: 

kk bXAdt/dX += , N,...,2,1k =  (3) 

State vector, state matrix and free state vector are as 
follows: [ ]T1C iuiX Φ= , 
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For the real parameters of the electric circuits, which 
include the transformer model, equation (3) represents 
“stiff” differential equations. Eigenvalues of state matrixes 

kA , have a ratio of ( ) ( ) 1A/A N,...,2,1kkmaxkmin <<
=

λλ . The 

rigidity of differential equations makes classical explicit 
numerical rules very hard (Euler, Runge-Kutta, Adams-
Moulton etc.) to solve the same equations successfully [7-
8]. Explicit rules, applied to “stiff” equations, are 
numerically unstable, what implies an increase of 
truncation error in each iteration and leads to a method 
divergence. Numerical rules that successfully solve “stiff” 
differential equations (3) has to be A-stable, [7-9]. One of 
the most commonly used rules is the implicit trapezoidal 
rule, which is applied in the EMTP software [10]. A-stable 
trapezoidal rule has the drawback of producing slowly 
damped oscillations (“numerical oscillations”) when 
applied to problems with large negative eigenvalues [10-
11]. These problems can occur in transformer energization 
simulation, [12]. There are different ways for suppression 
of numerical oscillations that use the special numerical 
procedure known as CDA [13]. Another solution consists 
of adding additional damping elements in the circuit [10].  
To completely avoid numerical oscillations with the A-
stability, applied numerical rule has to be L-stable [14-15], 
i.e. following relation has to be fulfilled: 

( ) 0zR
z

=
∞→

lim  (4) 

where ( )zR  is a stability function of the applied numerical 
rule. The trapezoidal rule is not L-stable, [9]. In this paper 
is proposed the use of backward differentiation formulas 
BDF that fulfill L-stability.  BDFp of the p-th order is rule 
applied to (3): 
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BDF1 is an implicit Euler method. BDF2 is both A-stable 
and L-stable. Two-step rule is represented by following 
relation obtained by (5): 

[ ] ( )k1nn
1

k1n hb2XX4hA2E3X +−−= −
−

+  (6) 

BDFp for 3p ≥  are ( )pA α  stable with stability angles 
o863 =α , o734 =α , o515 =α , [16]. 

During numerical solving of stiff differential equations that 
describe transformer energization, it is shown that 
eigenvalues of matrixes kA  are commonly in unstable 
domain of BDFp ( 3p ≥ ) rules. Because of the above-
mentioned reasons, BDF2 numerical rule is used in this 
paper. Advantage of the BDF2 method in comparison with 
the trapezoidal rule is better stability properties. Order of 
local truncation error of the BDF2 method is 3h .  
Simplified flowchart with the applied BDF numerical 
method (named “Algorithm”) is shown on the fig. 4. 
Procedure for numerical calculations of state vector is 
implemented in a special subroutine (FBDF2). 
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Fig. 4. Simplified flowchart “Algorithm” 

III. TEST CASES  

A. Results compared to Matlab/Power System Blockset 

In order to test the algorithm, a real example from the 
Power Utility of Bosnia and Herzegovina is used ( kV220  
voltage level):   
 

Network parameters: 
kV172Em = , Ω82.8R = , Ω281.0L = , F218.1C µ=  

 

Transformer parameters ( kV110/220 ): 
• nominal power MVA200Str = , 
• short circuit voltage %15u %k = , 
• resistance per winding phase Ω529.0R1 = , 
• leakage inductance H126.0L1 = , 
• iron core losses ΩM76.5Rm = . 
 

Table I: Magnetization curve of 200 MVA transformer 
 

 
i [p.u.] 

 
0 

 
0.005 

 
0.015 

 
0.03 

 
0.075 

 
1.0 

 
Φ [p.u.] 

 
0 

 
1.05 

 
1.08 

 
1.1 

 
1.12 

 
1.39 

 
It is shown that the “Algorithm” realized by the BDF2 rule 
eliminates numerical oscillations in comparison with the 
traditional trapezoidal rule that can not avoid such 
oscillations in the case of large eigenvalues range. Fig. 5. 
shows results of simulations of A-stable trapezoidal rule 
and A and L-stable BDF2 rule. 
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Fig. 5. Inrush current: trapezoidal and BDF method 

STATE VECTOR CALCULATION (FUNCTION FBDF2): 
[ ] [ ] [ ]( )t,A,X,,R,L,,l2FBDFX lsmm Φψ=  

( )tx j=Φ ; ( )kAj1 dim≤≤ ; ( )Φψ sgn=  

INITIAL CONDITIONS CALCULATION: 

[ ]T0100C00 IUIx Φ=  
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0i = ; 0j = ; 2l =  
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FUNCTION  FBDF2: 
[ ] [ ] [ ]( )t,A,X,,R,L,,l2FBDFX lsmm Φψ=  
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3l ≥
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Further, the simulation results realized by the “Algorithm” 
with the BDF numerical rule are compared to the 
MATLAB/Simulink/Power System Blockset [17] results. 
The transformer is energized at secm35T0 = , and the 
remanent magnetic flux is assumed to be nomr 5.0 ΦΦ = .  
All the results are obtained with double-precision 
arithmetic format. The results are shown in fig. 6. 
It can be observed that the core loss resistance mR , in this 
case, is considered as a constant value.  
From PBS solvers library was chosen the adequate stiff-
differential equation system solvers: ode15s (stiff/NDF), 
numerical differentiation formulas method, [16], [18].  
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Fig. 6. Inrush current, magnetic flux and transformer voltage: 

“Algorithm” and Power System Blockset results 
 

B. Results compared to laboratory measurements during 
transformer energization  

It must be pointed out that the realized program for 
power transformers is hard to test for two reasons: 
• Software tool Power System Blockset does not have 

the option for nonlinear representation of the 
resistance caused by the iron core losses due to the 
fact that those losses were strictly considered as 
constant values, and 

• Power transformers usually have, in manufacturer’s 
documentation, only three, maximum four 
measurement points of magnetizing curve. Those 
points are usually measured at 95%, 100% and 105% 
of nominal transformer voltage on the low-voltage 
side, which makes impossible to construct a 
magnetizing curve.  

Therefore, it is necessary to determine all the relevant data 
from the measurements with non-load transformer in order 
to determine how much does the non-linearity of iron core 
affects the results of simulation. Because of the above-
mentioned reasons, the realized algorithm is tested with the 
data obtained from the laboratory measurement of 
energization of the small transformer. 
Input data: vector of core inductances 

[ ]mN2m1mm L...LLL =  and vector of core loss resistances 
[ ]mN2m1mm R...RRR = , are given from curves Φ−mi  

and uiRm − . These curves are obtained by standard non-
load transformer test, [1]. Based on these nonlinear curves 
it is possible to recalculate input vectors from the relations:  

( )
( )

( ) ( )
( ) ( )ki1ki

k1k
ki
kL

mmm
mk −+

−+
==

ΦΦ
∆
∆Φ  (7) 

( )
( )

( ) ( )
( ) ( )ki1ki

ku1ku
ki

kuR
RmRmRm

mk −+
−+

==
∆
∆  (8) 

for 1N,...,2,1k −=  

Laboratory measurement of inrush current and transformer 
voltage during transformer energization is done according 
to fig. 3. 
Parameters of network model: 
 

V2210Em = , Ω14R = , H25.0L = , F22.4C µ= , 
Parameters of transformer model ( V24/220 ):  
• nominal power VA300Str = , 
• resistance per winding phase Ω99.1R1 = , 
• leakage inductance mH54.2L1 = , 
• input vectors of iron core inductances [ ]mL  and iron 

core resistances [ ]mR : 
K 1 2 3 4 5 5 7 8 

Lmk 7.96 12.15 9.70 6.01 3.76 2.28 1.79 1.40 
Rmk 2897 3909 4370 4726 4855 5071 4318 4545 
K 9 10 11 12 13 14 15 16 

Lmk 1.33 1.13 0.95 0.77 0.56 0.26 0.18 0.11 
Rmk 4208 3630 4038 3301 3295 2133 3035 2273 

Results of measurements and results realized by 
“Algorithm” are shown in fig. 7. 
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Figure 7. Inrush current and transformer voltage: measured and 

simulated by the "Algorithm" 

IV. CONCLUSIONS 

The proposed algorithm can be used for analyzing any 
low frequency transient phenomenon such as inrush 
current, ferroresonance, load rejection, etc., for a non-
linear transformer. The stiff differential equation system is 
solved by the A and L-stable backward differentiation 
formulas numerical method. L-stability puts in advantage 
BDF numerical rule in comparison to the traditionally used 
trapezoidal rule. This property of the BDF method 
completely eliminates numerical oscillations. The results 
presented in this paper are obtained with double-precision 
arithmetic in FORMAT LONG G – the best of fixed or 
floating point format with 15 accurated digits.  

All the numerical results obtained by this algorithm are 
checked with the Power System Blockset - electromagnetic 
transient software, integrated in the MATLAB/Simulink 
6.0. It is also shown that the calculated results with the 
applied algorithm are in good agreement with the 
measured results of the small transformer energization. 
The computing time (CPU time) of the developed program 
is close to CPU time of the commercial software such as 
MATLAB/Power System Blockset.  
BDF2 rule proposed in this paper eliminates numerical 
oscillations also in the cases when this can not be achieved 
with the trapezoidal rule.  
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