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Abstract – Negative impedances have long been used in power
system analysis for the representation of three-winding trans-
formers as star circuits. They do not cause problems as long as
precautions are observed about the correct placement of mag-
netizing branches. With the addition of ideal operational am-
plifiers, negative resistances and capacitances have recently
been used to represent first-order transfer functions of control
circuits, with only one (“non-inverting”) ideal operational
amplifier. While not physically realizable, it can be shown
that the equations are identical to those of a physically based
model with positive impedances and an extra inverting ideal
operational amplifier, if the system of equations of the latter is
reduced. In the past, some attempts have been made to repre-
sent transfer functions of control circuits with R,L,C-elements
directly connected to the measuring point of the power sys-
tem. This R,L,C-circuit does load the power system with an
impedance, however, which is unacceptable unless its value is
very high. A simple approach for avoiding the load on the
power system measuring point is the connection of an equal
impedance, but with negative value, to the same point. Exam-
ples show that these negative impedances do not cause prob-
lems in EMTP simulations.

Keywords – electromagnetic transients simulation, control sys-
tems, transformer modelling, negative impedance.

I. INTRODUCTION

Negative impedances are usually regarded with suspi-
cion in EMTP-type programs, and rightly so. For example,
if an ac voltage source were connected to an R-L branch to
ground, with a positive resistance of 1R = Ω  and a nega-
tive reactance of 10Lω = − Ω , the steady-state phasor so-
lution would simply be I=V/(1− j10). This might indeed be
a reasonable answer if the negative reactance represents the
impedance of a capacitor. In EMTP-type time-domain so-
lutions, solving the differential equation
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numerically, with whatever technique, would make the
current grow to infinity with L being negative. In this sim-
ple case, assuming the source is now a dc voltage con-
nected at 0t = , the exact solution is
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where the time constant T=L/R becomes negative for a
negative value of L, and the exponent therefore positive. If
the impedance  of –10Ω is that of a capacitor, the term vL

in Eq. (1) is of course incorrect, and must be replaced by

1
C

v i dt
C

= ⋅∫ . (3)

II. NEGATIVE INDUCTANCES IN  TRANSFORMER

EQUIVALENT CIRCUITS

A. Two-winding transformers

Negative inductances occur in two-winding transformers
when its two coupled windings (branches) are represented
by equivalent circuits with uncoupled branches. In general,
the two coupled branches are best described by branch
matrix equations, with the form

2

H H

L L

V IY tY

V ItY t Y

−
=

−
    
         

(4)

for steady-state solutions, where the branch voltages are

defined as 
1 2 1 2

;
H H H L L L

V V V V V V= − = − , assuming the

branches go from nodes H1 to H2 and L1 to L2. For transient
simulations, starting from the equation
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and recognizing that [L] does not exist because [Y] in Eq.
(4) is singular, we obtain with the inverse inductance ma-
trix
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the equation for the time domain
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. (7)

For simplicity, assume that [R] in Eq. (7) is zero, and
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that both windings go from node to ground. It can then be
seen that both branch equations of (4) and (7) can be repre-
sented as a nodal Π-circuit (Fig. 1).

This π-circuit is well known from power flow and short-
circuit studies done with per unit quantities, whenever “off-
nominal turns ratios” appear in cases where the transformer
ratio differs from the ratio of the base voltages. This Π-
circuit has a series admittance element tY between nodes

H1 and L1 (or a series inductance 
L

t
), a shunt admittance

element in node H1 of ( )1 t Y− (or a shunt inductance

1

L

t−
), and another shunt admittance element in node L1 of

( )2t t Y−  (or a shunt inductance 
2

L

t t−
).

Assuming t > 1, the shunt element in H1 is negative.
Equations (4) and (7) can also be obtained from a cascade
connection of a branch with admittance Y (or inductance
L), with an ideal transformer of ratio t. The latter repre-
sentation indicates that the negative shunt inductance in
node H1 of Fig. 1 should not create numerical problems.
Both representations, as a Π–circuit and as a cascade con-
nection, are equivalent.

If the transformer is energized from node H1, but open-
circuited in node L1, then Fig. 1 shows that the series im-
pedance Zseries = 1/(tY) from H1 to L1 with the shunt imped-
ance Zshunt = 1/[(t 2 – t)Y] from L1 to ground is in effect a
voltage divider, which gives us a ratio VH /VL = (Zseries +
Zshunt ) / Zshunt = t. If resistances are ignored, it would be an
inductive voltage divider.

What is furthermore interesting is the fact that the shunt
impedance of 1/[(1-t)/Y] in node H1 is the negative value of
the impedance (Zseries + Zshunt ) of the voltage divider. It
therefore compensates for the loading on the network that
(Zseries + Zshunt ) creates. This addition of a negative imped-
ance to prevent loading of the network will be discussed
further in Section V. One can also notice that the sum of
the three impedances in the Π-circuit is zero; they form a
resonance circuit.

A more general equivalent circuit that does not require
that the windings go from node to ground is shown in Fig.
2. In that more general case, the inductances of the two
diagonal branches are always negative, even in the case of t
= 1.0.

H 1 L 1
tY

(1- t )Y (t 2- t )Y

Fig. 1  Π-circuit with uncoupled branches.

H 1 L 1
tY

Y t 2Y

tY

- tY

- tY

H 2 L 2

Fig.2  Equivalent circuit with uncoupled branches for arbitrary
connection.

The correctness of Fig. 2 can easily be verified by look-
ing at the contribution of a branch current with Eq. (4) to
the nodal equation of a node. For example, the current IH1 to

H2, which is the same as

( ) ( )1 2 1 2H H H L L
I Y V V tY V V= − − − , is the same current as

the sum of the currents through the three branch admit-
tances connected to node H1 in Fig. 2.

B. Three-winding transformers

Negative inductances have long been used in power
system analysis in the representation of three-winding
transformers as star circuits, as shown in Fig. 3, with im-
pedances in per unit quantities or referred to one side. For
three-winding transformers with a high, medium and low
voltage winding, it is usually the medium voltage branch
that has a negative inductance value. Negative values do
not cause problems for steady-state as well as time-domain
solutions as long as precautions are observed about the
correct placement of magnetizing branches.

Without a magnetizing branch, the sum of the two in-
ductances between any two windings will always be posi-
tive (it is, in fact, the short-circuit inductance between
those 2 windings). Note that vL of Eq. (1) must be used for
all three branches, including the one with the negative
value.

If there are shunt branches at the star point for the repre-
sentation of saturation and iron core loss effects, then there
are situations where the time-domain simulation may go
unstable. A simple case would be an infinite magnetizing
inductance in parallel with a resistance for iron core losses.

H

S

ZL

ZH

ZM

L

M

Fig. 3  Star circuit for three-winding transformer with p.u. quan-
tities, or quantities referred to one side.
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If the transformer is unloaded and only energized from
the medium voltage side, assuming a negative inductance
in that branch, then we have the situation of Eq. (2), with a
negative time constant T=L/R, and consequently a growing
exponential term. The problem arises from the fact that
placing the branches for saturation and iron core loss ef-
fects at the star point is not correct, as pointed out previ-
ously [1-4].

In power flow and short-circuit studies, the values of the
star circuit are usually obtained from the short-circuit im-
pedances between pairs of windings. For example, the im-
pedance ZM can be obtained from

( )1

2
M HM ML HL

Z Z Z Z= + − . If this calculation is done with

complex quantities, whereby Re{ZHM}, etc. represents the
per unit losses in the short-circuit test between H and M
etc., then Re{ZM} may become negative. For steady-state
solutions, that may be acceptable. For transient simulations
with a magnetizing inductance in the star point, this would
lead to a solution with a growing exponential if the trans-
former is only energized from side M, unless the sum of the
resistance of the network connected to M and of Re{ZM}
becomes positive. The safest way to avoid this possible
instability is to separate [R] from [L]-1 according to Eq. (7),
and to check for negative values in [R] when these matrices
are created with support routines such as BCTRAN.  For
example, Microtran’s version of the transformer support
routine warns the user with the message

Resistance of winding xxx was calcu-
lated as x.xxxx p.u. based on 1 MVA (3-
phase). A negative resistance is not
acceptable if the exciting current is
taken into account. If you want to ac-
cept the negative resistance, run the
case again with an extra line after the
title card with "$IGNORE" in columns 1
- 7. If you want to set the resistance
to zero, use "$ZERO" instead in columns
1 - 5.

In more complicated network situations, the reason for a
growing exponential term may not be that easy to see. If
the network is linear, or linearized around an operating
point, an eigenvalue analysis would be necessary to see
whether there are any eigenvalues with real positive values.

III. NEGATIVE CAPACITANCE CREATED BY

CONVERSION TO P.U. QUANTITIES

Assume, for example, a stray capacitance C between the
high voltage terminal H1 and the low voltage terminal L1 of
a 230/115 kV transformer bank in wye/wye connection,
with the neutral solidly grounded. In equations with actual
quantities, this is a “normal” branch with an admittance Y
= jωC between nodes H1 and L1. In building the nodal ad-
mittance matrix [Yactual] for steady-state solutions, +jωC
will contribute to the diagonal elements H1 - H1 and L1 - L1,
and - jωC will contribute to the off-diagonal elements H1 -
L1 and L1 - H1.

For conversion to per unit quantities, the base values are
needed. Let’s assume base values of VH1 = 230/√3 kV and
VL1 = 115/√3 kV as single-phase voltage bases, and S =
100/3 MVA as the single-phase apparent power base. The
conversion to the per unit admittance matrix [Yp.u.] is
achieved by multiplying row H1 and column H1 of [Yactual]
with VH1 , and row L1 and column L1 with VL1 , and then
dividing all elements by S (Equation (IV.12) of Appendix
IV in [4]). What shows up in the diagonal element H1-H1

will then be jωC *VH1
2/S, in the diagonal element L1-L1 it

will be jωC *VL1
2/S, and in the off-diagonal elements H1-L1

and L1-H1 it will be – jωC *VH1VL1 /S.
This is no longer a single branch between nodes H1 and

L1. Instead, it has become a Π-circuit, with a series admit-
tance between nodes H1 and L1 of jωC *VH1VL1 /S, with a
shunt admittance in node H1 of jωC *( VH1

2 - VH1VL1)/S,
and in node L1 of jωC *( VL1

2 - VH1VL1)/S. This Π-circuit is
very similar to the Π-circuit of two-winding transformers
discussed earlier. With VL1 < VH1 in this example, the shunt
capacitance in node L1 will be negative.

IV. TRANSFER FUNCTIONS WITH IDEAL

OPERATIONAL AMPLIFIERS AND NEGATIVE

RESISTANCES, INDUCTANCES AND CAPACITANCES

After the modelling of current and voltage dependent
sources in EMTP-based programs in [5], [6], reference [7]
has presented a technique which uses circuit components,
such as resistances, capacitances, and ideal operational
amplifiers, for the computer modelling of control transfer
functions. This novel approach can be used by any EMTP-
type electromagnetic transients program or by similar
simulation programs, independently of the method used for
the time-domain integration, because of its generality and
flexibility.

For an efficient digital computer implementation, it is
assumed that resistances and capacitances can be assigned
negative values. Ideal operational amplifiers can be repre-
sented with the Modified Nodal Analysis (MNA) method,
which would result in an unsymmetric nodal conductance
matrix.

The compensation method with an iterative Newton-
Raphson algorithm is used, because nonlinear effects, such
as hard and soft limits, or saturation, can then easily be
handled as well as showed in [7].

With the compensation method, a simultaneous solution
of control and electric power system equations is obtained
at every time step of the digital computer simulation.

Following is the proof that positive impedances with 2
amplifiers can be converted to a circuit with one amplifier
with negative impedances, exactly. Let’s assume that we
use two ideal operational amplifiers as in Fig. 4, with a
physically based network, for a transfer function. The first
one is between nodes 2 and 3, and the second one is be-
tween nodes 4 and 5. For the second inverting operational
amplifier, let’s assume that the two admittances are equal
to Y, because it should just invert.
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Y23
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Y

Fig. 4  Two ideal operational amplifiers.

With one non-inverting circuit, the diagram would be as
shown in Fig. 5:

1 52

Y12

-Y23

Fig. 5  One non-inverting ideal operational amplifier.

If we write the equations in the frequency domain, and
use the transfer function approach, we know from Fig. 4
that V3/V1 = -Y12/Y23 and V5/V3 = -Y/Y or V5/V3 = -1. This
leads to the result V5/V1 = Y12/Y23 for the single non-
inverting circuit model of Fig. 5.

What many people, including in academia, probably do
not believe immediately is the fact that the EMTP network
equations can also be converted from the first to the second
circuit. Start with equations for nodes 2,3,4,5, using the
fact that

I2 = 0,
I4 = 0,

12 1 12 23 2 23 3
2 : ( ) 0for node Y V Y Y V Y V− + + − = (8)

23 2 23 3 4 30
3 : ( ) 0for node Y V Y Y V YV I− + + − − = (9)

3 4 5
4 : 2 0for node YV YV YV− + − = (10)

4 5 50
5 : 0for node YV YV I− + − = (11)

We also have the 2 extra equations

2
0V = (12)

 
4

0V = (13)

Therefore, we have now 6 equations to solve for V2, V3,
V4, V5, I30, I50. The latter 2 currents are the currents going
into the amplifiers on the output side. These equations
would partly be solved in the main program, and partly in
CONNEC, or if we solve all network equations together
with those of the ideal operational amplifiers, they would

be solved as one system of equations.

By inserting equations (12) and (13) into equations (8)
to (11), we obtain:

12 1 23 3
0Y V Y V− − = , from Eq. (8) (14)

 
3 5

0YV YV− − = , from Eq. (10) (15)

The second equation (15) simply says V3 = - V5, which
inserted into equation (14) leads to

12 1 23 5
0Y V Y V− + = (16)

 This is exactly what we get from the circuit of Fig. 5,
when we write the equation for node 2 and set V2 = 0.

I30 and I50  in equations (9) and (11) seem to be depend-
ent variables, and can be calculated once the voltages are
known (they are needed, of course, if CONNEC is used).
Only equation (12) would be needed for Fig. 5.

To include limits in the transfer function representation,
one can either include the limiting functions into the equa-
tions of the ideal operational amplifier directly, or use non-
linear resistances as models for Zener diodes. For the non-
inverting circuits with negative resistances discussed
above, the nonlinear resistances may have to be negative as
well. In most EMTP versions, nonlinear resistances can be
solved with the compensation method, with Newton’s
method for the iterations. Assume that the program is writ-
ten in such a way that a subroutine is called to find the cur-
rent i and its derivative di/dv for a given approximate solu-
tion of v.  Then it becomes easy to treat the case of nega-
tive nonlinear resistances by simply changing the signs on i
and di/dv, just before return from the subroutine. Little else
must then be changed in the code. This has been tested
successfully with UBC’s version of the EMTP on a limited
number of cases.

V. BUILDING TRANSFER FUNCTIONS WITH R,L,C-
CIRCUITS

As described in the preceding section, transfer functions
can easily be modelled with ideal operational amplifiers
and positive or negative impedances. Before operational
amplifiers became available in EMTP-type programs, some
users have attempted to represent transfer functions of
control circuits with R,L,C-elements. In general, these ele-
ments do load the power system at the measuring point,
unless their impedance is very high.

The discussion of the unloaded two-winding transformer
in Section II, Subsection A, with the series element tY and
shunt element (t2-t)Y forming a voltage divider, and the
shunt element (1-t)Y in node H1 providing a negative com-
pensating impedance that unloads the network at node H1,
suggests an approach for building transfer functions di-
rectly from network elements alone.

Let us assume that we want to create a first-order trans-

fer function 
1

K

sT+
, with the input being the voltage be-

tween nodes i and k, and with K = 10 and T = 1 ms (Fig. 6).
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Fig. 6  Transfer function built from R,L,C-circuits.

By connecting a resistive voltage divider with

1
9R = − Ω and 

2
10R = Ω  between nodes i and k, we

achieve the correct amplification for the voltage between

nodes l and k of 2

1 2

10
R

R R
=

+
. To avoid loading the net-

work at the measuring point with the resistance

1 2
( 1)R R+ = Ω , we now connect a negative resistance of

1
parallel

R = − Ω  to compensate for the load. If the voltages in

nodes i and k could be solved before connecting these ele-
ments, they can still be solved because nothing has been
changed in their diagonal elements of the matrix. The extra
node equation for node l is simply the voltage divider
equation.

The dynamics of (1.0 )sT+  can be modelled by adding

a branch with L = 1 mH and 1R = Ω  between nodes l and
k. The voltage across the resistance between nodes m and k
will then have the correct transfer function output.  With a
resistance of 1 Ω, the current would be the correct output
as well. Again, this R-L branch would load the network,
which can be avoided by connecting another R-L branch
with negative values in parallel.

Fig. 7 shows an EMTP simulation, where node k was
ground, and where a dc voltage source with an internal
resistance of 1Ω was connected to node i. The diagonal
elements in the triangularized matrix, without pivoting,
were

Gii = -0.111111, Gll =  0.102381, Gmm =  1.025581.
As can be seen, there is no sign of ill-conditioning in the

matrix. If the amplification were increased from 10.0 to
1000.0, the diagonal elements of the triangularized matrix
would become

Gii = -0.0010010, Gll =  0.0033810, Gmm =  0.3105634,
and there is still no ill-conditioning.

If the output were now connected to a network with an
unknown impedance as seen between nodes m and k, then
it becomes impossible to add a compensating negative im-
pedance to avoid loading because of its unknown value,
and this simple approach would eventually become un-
workable.

On the other hand, if the output voltage is just used as a
variable, e.g. as the field voltage of a synchronous genera-
tor, the method would work. Since field windings have
typical time constants of a few seconds, using it as a field
voltage with a delay of one time step would probably be
acceptable.

Fig. 7  Transfer function simulation results.
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V. CONCLUSIONS

This paper has discussed the issue of negative imped-
ances as power system and control elements in EMTP-
type programs. Negative impedances have long been
used in power system analysis for the representation of
three-winding transformers as star circuits. They do not
cause problems as long as precautions are observed
about the correct placement of magnetizing branches.

With the addition of ideal operational amplifiers,
negative resistances and capacitances have recently been
used to represent first-order transfer functions of control
circuits. Examples have shown that the use of negative
impedances to avoid loading measuring points in power
systems networks does not cause problems in EMTP
simulations.
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