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Abstract - Hydro-Quebec (HQ) had used for many years a
very large hybrid simulator for studying various aspects of its
power system network. New developments on its network
requires to expand and maintain the simulation facilities, and
with the development success of Hypersim digital simulator, it
was decided to use this technology to gradually replace the
hybrid simulator.

This paper presents the development and validation of this
large scale digital simulator for AC and DC power system
performance studies. Validation tests are performed with a
relatively large AC-DC interconnected network including
generators (turbine, AVR), dynamic loads and a full bipole
HVDC transmission system. The network is simulated on
both Hypersim real-time simulator and on the hybrid
simulator, it is connected with the real external HVDC
controls. Comparison of simulation results obtained with
Hypersim and with the hybrid simulator are presented. The
benefits of precision valve model as well as the effect of the
simulation time step will also been discussed.

Keywords - Power System real time simulation, HVDC control

testing, Hypersim

I. INTRODUCTION

Hydro-Quebec (HQ) has extensively used its real-time

simulation facilities for testing protection systems, new

controllers and various FACTS systems and for

optimization of existing controls. These facilities include a

fully automated large-scale hybrid simulator [1] using

principally analog models to represent the transmission

network and digital models for loads, machines and

controls. Fully digital real-time simulator of medium scale

was also in use for many years for testing protection

systems and controllers.

In order to be able to sustain the need for future

development and new equipment installation, a larger size

digital simulator [2] was added to these facilities for

simulation of complex power system networks. HQ has

undertaken to use this digital simulator for network studies

and made many comparisons with the hybrid simulator as

well as with the electromagnetic transients program

(EMTP).

To make sure that the digital simulator is also reliable tool

to study large network, tests have been carried out on the

Hydro-Quebec AC-DC interconnected network simulated

on both Hypersim and the hybrid simulator. This paper will

present the result comparison obtained with these two

different technologies.

II. DIGITAL SIMULATOR DESCRIPTION

Software

Hypersim software is based on a graphical user interface to

edit the power system, enter component parameters and

control the simulation. Many tools are also available to

display simulation waveforms, automate tests sequence

and store results in a database [2].

Hypersim has been developed with portability in mind, it

can therefore be used on various platforms: it supports

actually the SGI parallel computer and the PC-Cluster [3].

The simulator is also very open to other applications: it can

take the generated code of a Simulink model and filters are

available to input EMTP files.

Simulation of a large network requires new functionalities

which has been added: automatic load flow to initialize

model parameters, taking snapshot to restart the simulation

from same conditions.

Hypersim can also simulate networks in non real-time

mode but still take the benefit of available parallel CPUs.

for much faster simulation than the performance of a single

CPU, even for larger power systems.

Hardware

The hardware architecture of the Hypersim digital

simulator is based on a commercially available parallel

computer from SGI, which can be scaled from 2 to 512

processors.

The configuration used during the validation tests is the

SGI Origin 3800 with 32 high performance MIPS

processors at 500 MHz (Fig. 1). The processor number will

soon be increased to enable the simulation of larger power

system network.

For interconnection with external equipment under test, the

computer provides standard PCI I/O slots accessible from

any processors, and also scalable according to the study

requirements. Actually, Hypersim is equiped with D/A and

A/D for analog signals connection. The digital I/Os have

the capability of time delay measurements between time

step. This means that external event which occur between

time step are used by Hypersim with the correct timing to

reflect the exact time of state change.

The advantages of using a generic computer for real time
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simulation instead of a dedicated hardware are multiple: it

can be used for other software applications and it can be

easily upgraded with faster processor and therefore keep

the simulator at the forefront of the technology.

The whole computer system with CPU and I/O required

only 2 cabinets, which is an enormous size reduction in

comparison to the hybrid simulator. Beside the size

reduction, the time required to set-up a study of a new

power system is also considerably reduced. Furthermore,

user can switch easily from one network to another, a

facility which is unthinkable on the hybrid simulator.

III. DESCRIPTION OF THE SIMULATED

NETWORK

Figure 2 presents the Hydro-Québec HVAC-HVDC

interconnected network simulated on Hypersim and the

hybrid simulator. All the 735 kV buses are represented.

Some 315 kV buses and lines are also explicitly

represented, but the major part of the lower voltage

transmission and distribution system, including the loads

and generation, are represented by reduced dynamic

equivalents. The hydroelectric generators are represented

by detailed model incorporating turbine, automatic voltage

Fig. 1 SGI Origin 3800 with 32 high performance
processors at 500 MHz.
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Fig. 2 Hydro-Québec’s HVAC/HVDC network simulated on Hypersim and hybrid simulator.
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3

regulator (AVR) and stabilizer.

The multiterminal HVDC link includes in detail with a

bipolar model, ±450 kV transmission lines, DC smoothing

reactors, 60 Hz blocking filters, DC filters, electrode lines

and switches as well as the DC switch yards. The AC filters

at each station are also represented in detail.

For the digital simulation with Hypersim, all elements,

except the four ABB controllers, are simulated by digital

models. The four poles control (Radisson converter and

Nicolet inverter) are replicas of the site controls, they use

the same hardware and software as the real controls on the

Hydro-Quebec network. The controls were also equiped

with DC line protection, AC undervoltage detection and

commutation failure protection. In overall, the simulated

network includes the following components:

• 122 three phase buses
• 44 single phase buses
• 19 generators (turbine, AVR, stabilizer)

• 3 synchronous compensators
• 7 dynamic loads
• 4 DC controller
• 1 bipole 12 pulses DC system
• 9 coupled lines (distributed parameters)
• 51 single lines (distributed parameters)
• 8 Marti lines (DC lines)
• 43 transformers
• 28 AC filters
• 18 surge arrestors
• 163 RLC elements (loads and shunts)

IV. CONNECTION AND VALIDATION OF

HYPERSIM IN CLOSE LOOP

Close-loop connection

The close-loop connection of the simulated network in

Hypersim to the ABB controller is shown in Fig. 3.

Hypersim sends (via D/A converter) to the ABB controller

the DC voltage (UDL), DC current (IDC), three phase-to-

phase AC voltages as well as currents of the high side of the

converter transformers. The ABB controllers sends (via the

digital input or DI) the 12 firing pulses to Hypersim. Using

the time-delay (reported by the DI module) between the

firing pulse and the simulation time-step, Hypersim

performs the interpolation required by the precision valve

model to simulate the exact timing of the valve firing [4].

Validation

In order to validate Hypersim for large network, same tests

are done on the predecessor hybrid simulator and on

Hypersim. Both simulates the Hydro-Quebec’s AC-DC

network connected to the real ABB HVDC controllers in

close-loop.

The reason for choosing the hybrid simulator as a

comparison base is that this simulator has been used for

years to perform serious studies for Hydro-Quebec. It has

been intensively validated against load flow, stability,

EMTP programs and even with some Hydro-Québec field

tests[5].

First, tests are done on hybrid simulator and saved in the

data base. The steady-state operating conditions prior to

any test are validated by comparing AC voltages

(magnitude and phase angles), DC voltages, currents, valve

firing angles and tap changer positions measured on the

analog Hybrid simulator against results obtained from

Hydro-Québec’s AC/DC load flow program RP600. The

frequency response of individual models and of the

simulated network viewed from the converter buses are

verified by comparing measured simulator impedances and

phase angles with results obtained from the EMTP

frequency domain analysis. The dynamic response of the

machines is validated by comparing results from the

simulator for balanced three-phase faults with those

obtained from Hydro-Québec’s stability program ST600.

Secondly, the network simulated with the Hypersim digital

simulator was connected to the ABB controller and the

same tests were repeated. As one example of result from

both simulators, a 6 cycles (100 ms) three-phase-to-ground

line fault at Némiskau 735 kV followed by the opening of

line L57 to eliminate the fault were done. Fig. 4 shows the

superimposition of waveforms measured on the Hydro-

Quebec network simulated using the Hypersin digital

simulator and the hybrid simulator. The left side of this

figure shows the rectifier’s signals including the DC voltage

(UDL), the DC current (IDC), the current order and the

alpha angle. The right side presents the same signals for the
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Fig. 3 Close-loop connection diagram between Hypersim
and the ABB HVDC controller.
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inverter, except the last signal is gamma angle.

Similar results obtained from both type of simulations

confirm the reliability and stability of the Hypersim digital

simulator. Other waveforms are shown in Fig. 5: the phase-

to-ground voltage at Némiskau 735 kV bus (Ua_NEM7),

Radisson 315 kV bus (Ua_RAD3), Duvernay 735 kV bus

(Ua_DUV7), fault currents at Némiskau, active power,

reactive power and frequency of the hydroelectric generator

at LA GRANDE 2 (LG2), and active power of the dynamic

load of RDL3. Many other tests were performed with

different fault locations and they give comparable results.

V. BENEFITS OF PRECISION VALVE MODEL AND

EFFECT OF SIMULATION TIME-STEPS

The digital simulation of HVDC network requires an

accurate simulation of valve firing instance. The calculation

is performed only at the time-step moment but the firing

pulses send by the real controller can arrive at any time.

Hypersim hardware has the ability to catch the firing pulses

at the exact time and measure the delay between the firing

pulse and the next time step. This information is sent to

Hypersim as a parameter needed by the precision valve

algorithm [4]. Without precision valve model, jitter effect

will be created by the asynchronism between the system

frequency and the firing frequency. This will generate non

characteristic harmonics which can even be amplified by

action of controllers. The precision valve allows

furthermore to use larger time step without significant lost

of simulation performance.

Fig. 6 shows the superimposition of DC voltage obtained

with the hybrid simulator and with Hypersim operated at 56

and 80 µs. It shows also the benefits of the precision valve

model in Hypersim. For 56 and 80 µs and with precision

valve model, Hypersim behaves like the hybrid simulator.

For the case of 56 µs of time-step and without precision

valve model, a considerable jitter effect can be seen.

VI. CONCLUSIONS

The paper has summarized the description of the fully

digital simulator Hypersim. In terms of software, this

simulator has been developed to be portable on various

platforms, in real-time or non real-time mode. On the

hardware side, it can run on simple workstation in non real-

time mode or on the SGI parallel machine and PC cluster

for both real-time and non real-time mode.

An application case of relatively large network simulated

on both the hybrid simulator and on Hypersim has been

carried out. The purpose is to make sure that Hypersim can

simulate large and complex networks in real-time while

preserving a small time-step and satisfactory results.

Comparisons of results between the hybrid simulator and

Hypersim have demonstrated very good matching. The

precision valve model has also well behaved inside the

simulation of a complex AC-DC interconnected network

Rectifier side Inverter side

Fig. 4 Superimposition of some waveforms obtained with the Hypersim and the hybrid simulator
for the DC part of the network.

Test: a 6 cycles (100 ms) three-phase-to-ground line fault at Némiskau 735 kV followed by the opening of line.
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