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Abstract – Time-varying spectra of non-stationary time-series 
commonly used are spectrograms from the Short-Time Fou-
rier Transform (STFT). The most prominent limitation of the 
Fourier Transform is that of frequency resolution. To over-
come the limitation the Wavelet Transform, Wigner-Ville 
Distribution and the Min-Norm subspace method have been 
applied for spectrum estimation of non-stationary signals 
caused by switching on capacitor banks and by a short circuit 
at the output of a frequency converter. Investigation results 
confirm the advantages of the advanced methods. 
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I. INTRODUCTION 

The aim of signal analysis is to extract relevant informa-
tion from a signal by transforming it. Spectrum estimation 
of discretely sampled deterministic and stochastic proc-
esses is usually based on procedures employing the Fast 
Fourier Transform (FFT). Conventional FFT spectral 
estimation is based on a Fourier series model of the data, 
that is the process is assumed to be composed of a set of 
harmonically related sinusoids. This approach to spectrum 
analysis is computationally efficient and produces 
reasonable results for a large class of signal processes. In 
spite of these advantages there are several inherent 
performance limitations of the FFT approach. The most 
prominent limitation is that of frequency resolution, i.e. the 
ability to distinguish the spectral responses of two or more 
signals. Because of some invalid assumptions (zero data or 
repetitive data outside the duration of observation) made in 
this methods, the estimated spectrum can be a smeared 
version of the true spectrum. A second limitation is due to 
windowing of the data, that occurs when processing with 
the FFT. Windowing manifests itself as leakage in the 
spectral domain – energy in the main lobe of a spectral 
response leaks into the side-lobs, obscuring and distorting 
other spectral responses that are present. These two 
performance limitations of the FFT approach are 
particularly troublesome when analysing short data records. 
Short data records occur frequently in practice, because 
many measured processes are brief in duration or have 
slowly time-varying spectra, that can be considered 
constant only for short record lengths. In an attempt to 
alleviate the limitations of the FFT approach, many 
alternative spectral estimation procedures have been 
proposed within the last 4-5 decades.  

In the case of a non-stationary signal, any change of the 
signal causes a continuous spectrum which spread out over 
the whole frequency axis. Therefore other methods of 
analysis are needed, to get a two-dimensional time-
frequency representation S(t,ω) of the investigated signal. 
First, Gabor has adapted the Fourier Transform to define 
the S(t,ω), assuming that the signal is stationary when seen 
through a window of limited extent. This yields the Short-
Time Fourier Transform (STFT). The time varying spectra 
of non-stationary  time series commonly used are spectro-
grams, from the STFT. If a signal is composed of small 
bursts of components, then each type of component can be 
analysed with good time resolution or frequency resolution, 
but not both. To overcome the resolution limitation, the 
Wavelet Transform (WT) has been developed. [7]. Wave-
let Transform provides a unified framework for a number 
of methods, which have been developed independently for 
various signal processing applications. In contrast to the 
STFT, the WT uses short windows at high frequencies and 
long windows for low frequencies. Using the WT, the 
time-varying spectra of non-stationary signals can also 
been obtained in form of scalograms. Scalogram is defined 
as the squared modulus of the WT. In contrast to the 
spectrogram the energy of the signal is here distributed 
with different resolutions.  

The WT is also related to the time-frequency analysis 
based on the Wigner-Ville Distribution (WVD). The 
Wigner-Ville spectrum shows better frequency concentra-
tion and less phase dependence than Fourier spectra [1, 3] 

The subspace frequency estimation methods rely on the 
property that the noise subspace eigenvectors of a Toeplitz 
autocorrelation matrix are orthogonal to the eigenvectors 
spanning the signal space [2]. The model of the signal in 
this case is a sum of random sinusoids in the background 
of noise of a known covariance function. The eigenvectors 
spanning the noise space are the ones whose eigenvalues 
are the smallest and equal to the noise power. One of the 
most important techniques, based on the concepts of sub-
spaces is the Min-Norm method [4]. 

Transients resulting from the switching capacitor banks 
in electrical distribution systems affects power quality. The 
estimation of parameters of transient components is very 
important for design of protection and control instruments. 
The transient waveforms have been investigated using 
Wavelet Transform (scalograms) and Wigner-Ville Distri-
bution. 

Reliability of power electronic drive systems is impor-



International Conference on Power Systems Transients – IPST 2003 in New Orleans, USA 
 

 2

tant in many industrial applications. The analysis of fault 
mode behaviour can be utilised for development of moni-
toring and diagnostic systems. In this paper we present 
also some results of simulation investigations of a con-
verter-fed induction motor drive. PWM converters supply-
ing asynchronous motor were simulated. Detection of ir-
regular frequencies may be useful for diagnosis of some 
drive faults. 

Spectrum of the signal was estimated with the help of 
the Wavelet Transform (WT), Wigner-Ville Distribution 
(WVD) and Min-Norm method (subspace method).  

II. WIGNER-VILLE REPRESENTATION 

The Wigner-Ville distribution is expressed by: 
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where t is a time variable, ω is a frequency variable and 
* denotes complex conjugate.  

For a discrete-time signal ( )nx  the discrete pseudo-
Wigner-Ville distribution (PWD) is evaluated using a slid-
ing symmetrical finite-length analysis window ( )τh [6]. 
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where ( )τh  is a windowing function that satisfies the 
condition: ( ) Lh >= ττ  ;0 . Variables n and k correspond 
respectively to the discrete time and frequency variables. 
The Wigner-Ville distribution of a signal can attain nega-
tive values. Each time-frequency representation, which 
preserves marginal conditions cannot be positive every-
where. These local negative values does not have any 
physical meaning.  

One main deficiency of the WVD is the cross-term in-
terference. WVD of the sum of signal components is a 
linear combination of auto- and cross-terms. Each pair of 
the signal components creates one additional cross-term in 
the spectrum, thus the desired time-frequency representa-
tion may be confusing.  

Traditionally, the cross-terms are considered as some-
thing undesired in the WVD [6] and should be removed. 
One way of lowering cross-term interference is to apply a 
low-pass filter to the WVD. The smoothing, however, will 
reduce the frequency resolution of the WVD and cause the 
loss of some useful properties of the transformation [5]. 

III. WAVELET TRANSFORM 

The continuous wavelet transform (CWT) of a signal f(t) 
depends on two variables: scale (or frequency) parameter a, 
and time parameter τ. It is given by: 
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where g(t) is the basic (or mother) wavelet, and 
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are the wavelet basis functions.  
The basic wavelet can be real or complex.  
The complex Morlet wavelet is defined by: 
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where: 
fB, is a positive bandwidth parameter, 
fC  is a wavelet center frequency. 
If the sampling period is TP, it is natural to associate to 

the scale a the frequency:  
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a
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where: 
a is a scale. 
TP is the sampling period. 
fC  is the center frequency of a wavelet in Hz. 
f  is the frequency corresponding to the scale a, in Hz 

IV. MODIFIED MIN-NORM METHOD 

The Min-Norm method involves calculation of the cor-
relation matrix of the signal. Smallest eigenvalues of the 
matrix correspond to the noise subspace and largest (all 
greater than the noise variance) correspond to the signal 
subspace. The matrix of eigenvectors is defined by: 

[ ]1 2noise M M N+ +=E e e e                                     (6) 

N-M smallest eigenvalues of the correlation matrix (ma-
trix dimension N>M+1) correspond to the noise subspace 
and M largest (all greater than 2

0σ ) corresponds to the sig-
nal subspace.  

Min-norm method uses one vector d for frequency esti-
mation. This vector, belonging to the noise subspace, has 
minimum Euclidean norm and his first element equal to 
one. We can present noiseE  in the form: 
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where T*c is the upper row of the matrix. Hence 
T

noise
*Ec = , where * 1T =d . These conditions are ex-

pressed by the following equation: 
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Pseudospectrum defined with the help of d is defined as: 
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where w is defined as: ( )11 ii
Tj Nje e ωω − =  w  

Since each of the elements of the signal vector is or-
thogonal to the noise subspace, the quantity (9) exhibits 
sharp peaks at the signal component frequencies. 

In order to adapt this high-resolution method for analy-
sis of non-stationary signals we use similar approach as in 
short-time Fourier transform (STFT). The time varying 
signal is broken up into minor segments (with the help of 
the temporal window function) and each segment (possibly 
overlapping) is analyses. 

The denominator of (9) is estimated for the each time 
instant. Instantaneous estimates of (9) can be used as esti-
mates of the instantaneous frequency of the signal [4]. 

V. INVESTIGATIONS 

A. Switching of Capacitor Banks 

In the paper, investigation results in a distribution sys-
tem as in Fig. 1 are shown. Two capacitor banks (CB) 
were installed along the feeder. Several cases were simu-
lated and both currents and voltages were recorded. Fig. 2 
shows the current waveform at the beginning of the feeder 
for the case that the first CB (900 kVAr) was switched on 
at 0.03s and the second CB (1200 kVAr) at 0.09s. 

source
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Fig. 1 One-phase diagram of the simulated system. 

Applying the Wavelet Transform a scalogram has been 
obtained (Figs. 3, 4, 5), which enables to detect three sig-
nal components: the basic component (50 Hz) and two 
transient components (272 Hz and 478 Hz). 
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Fig. 2. Current waveform at the beginning of the feeder during 

subsequent switching of two capacitor banks. 

 
Fig. 3. Time frequency representation of the signal taken from 
switching of the capacitor banks, obtained using the Complex 

Morlet Wavelet, fB=1; fC=5, scale=9:2:300. 

0 200 400 600 800 1000
0

1

2

3

4
x 10

6

frequency [Hz]

cw
t c

oe
ffi

ci
en

ts

50Hz 

478Hz 
t=0.04s 

 
Fig. 4. Cross-section of the time-frequency representation from 

Fig.3 for the time t=0.04 s 

Wigner-Ville Distribution offers the possibility to track 
the frequency and amplitude changes of a non-stationary 
signal. When applying the WVD for analysing the current 
signal in Fig. 2, the components 50 Hz, 270 Hz and 475 
Hz have been detected (Figs. 6, 7, 8), which are closed to 
the results obtained by Wavelet Transform. However, ap-
pearance of cross-terms (110 Hz and 160 Hz) is difficult to 
explain. The Wigner-Ville representation allows immedi-
ate determination of the time point of the commutation 
incipience. 
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Fig. 5. Cross-section of the time-frequency representation from 

Fig.3 for the time t=0.1 s 
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Fig. 6. Time frequency representation of the signal from Fig. 1 
(switching of the capacitor banks), obtained using the Wigner-

Ville Distribution (with Gaussian smoothing). 
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Fig. 7. Cross-section of the time-frequency representation from 

Fig. 6 for the time t=0.04 s. 

B. Fault operation of the Inverter Drive 

In the paper we show investigation results of a 3kVA-
PWM-converter with a modulation frequency of 1 kHz 
supplying a 2-pole, 1 kW asynchronous motor (supply 
voltage 220 V, nominal power 1,1 kW, slip 6 %, 
cosφ=0.81. (Fig. 9). Characteristic RC-damping compo-
nents at the rectifier bridge and at the converter valves are 
considered. To design the intermediate circuit, the L, C 
values of a typical 3 kVA converter are chosen.  
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Fig. 8. Cross-section of the time-frequency representation from 

Fig. 6 for the time t=0.1 s. 

Fault operation of the inverter drive was considered 
short-circuit between motor leads which occurs at the time 
0.1 s (Fig. 10) Main frequency of the inverter 60 Hz, sam-
pling frequency 20 kHz. 

 
Fig. 9. Diagram of the simulated inverter drive. 
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Fig. 10. Current waveform at the inverter output. 

The current signal spectrum has been calculated using 
the Wavelet Transform (Figs. 11, 12, 13), Min-Norm sub-
space method (Figs. 14, 15) and the Wigner-Ville Distri-
bution (Figs. 16, 17, 18). The WT enables to detect before 
the short circuit the short circuit the modulation frequency 
of the inverter equal to 1000 Hz. Where a short circuit 
occurs, we can see two modulation components (880 Hz 
and 1100 Hz) and an additional component with frequency 
1930 Hz. In the case after  the short circuit appears, the 
Min-Norm method enables to detect two intermodulation 
frequencies (880 Hz and 1120 Hz), and two additional 
components (1920 Hz and 2070 Hz).  

 
Fig. 11. Time frequency representation of the signal taken from 
the fault operation of the inverter drive, obtained using the Com-

plex Morlet Wavelet, fB=1; fC=1, scale=0.1:0.1:10. 
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Fig. 12. Cross-section of the time-frequency representation from 

Fig. 11 for the time t=0.05 s. 
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Fig. 13. Cross-section of the time-frequency representation from 

Fig. 11 for the time t=0.2 s. 

Due to its high-resolution properties, the Min-Norm 
method is especially suitable for identification and fre-
quency estimation of signal components, which frequen-
cies differ slightly. Detection of the additional higher fre-
quency component can be applied as the fault indicator. 
The results obtained when using WVD are not satisfactory 
(Fig. 16, 17, 18). Before and after the fault appears the 
basic component, which has been detected. The modula-
tion components (1000 Hz) has been detected only after 
the fault appearance, when the amplitude of the component 
is high enough. Unfortunately, the appearance of non-
existent component of about 500 Hz becomes evident. 
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Fig. 14. Time frequency representation of the signal taken from 
fault operation of the frequency converter, obtained using the 
Min-Norm method. (window length 80 samples, sampling fre-

quency 20 kHz). 
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Fig. 15. Cross-section of the time-frequency representation from 

the Fig. 14 for the time t=0.17 s. 
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Fig. 16. Time frequency representation of the signal taken from 

the fault operation of the frequency converter, obtained using the 
Wigner-Ville Distribution (with Gaussian smoothing). 

The cross-term interference components appear at fre-
quencies which lie between the frequencies of two strong 
components. The amplitude of these components is often 
oscillating (as in Fig. 6 for the components with frequen-
cies 110 and 160 Hz). As already mentioned, the way of 
lowering cross-term interference is to apply a low-pass 
filter to the WVD. In practical situations it does not always 
remove all artefacts and reduces the frequency resolution.  
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Fig. 17. Cross-section of the time-frequency representation from 

the Fig. 16 for the time t=0.05 s. 
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Fig. 18. Cross-section of the time-frequency representation from 

the Fig. 16 for the time t=0.2 s. 

VI. CONCLUSIONS 

Transients resulting from the switching capacitor banks 
and fault operation of the frequency converter in electrical 
distribution systems affect power quality. Modern fre-
quency power inverters generate a wide spectrum of har-
monic components. Detection of all signal components can 
be effectively used to identify faults in inverter. The pa-
rameters of transient components have been analyzed us-
ing the Wigner-Ville distribution, wavelets and subspace 
methods. The Wigner-Ville spectrum of signals with time 
limited windows shows better frequency concentration and 
less phase dependence than Fourier spectra. The investiga-
tions show the advantages of the method basing proposed 
methods. However, the Wigner-Ville distribution offers 
advantages when analyzing signals with few components. 
It allows in the case of the signal obtained during switch-
ing of capacitor banks, immediate determination of the 
time point of the commutation incipience and amplitudes 
of respective components.  

In the case of multi-component signals (frequency con-
verter), due to the appearance of cross-terms, obtained 
representation is difficult to interpret. By comparing the 
Wigner-Ville and min-norm representation the appearance 
of non-existent component of about 500 Hz becomes evi-
dent. In this case better results gives the subspace method, 
which allows the determination of the frequencies of the 
spectral components with high accuracy and does not suf-
fer from the appearance of artifacts. Due to its high-
resolution properties, the Min-Norm method is especially 
suitable for identification and frequency estimation of sig-
nal components, which frequencies differ slightly. 
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