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Modeling and Simulation of Multiple Nonlinearities
Using TLM

Venkata Dinavahi, Member, IEEE

Abstract— This paper introduces a new application of the
Transmission Line Modeling (TLM) method for the modeling
and simulation of systems containing multiple nonlinear elements.
Originally proposed for the analysis of low-power electronic
devices and for the solution of finite element problems, TLM
has the unique ability to decouple nonlinear element(s) from
the network and from each other so that they can be solved
individually using Newton-Raphson (N-R). This is the key which
allows for greater accuracy, stability, faster convergence and
lower computational burden. A detailed case study of a nonlinear
bridge circuit is presented to illustrate the advantages of the TLM
method vis-à-vis the conventional Newton method. It is shown
that the TLM method offers significant advantages in terms of
convergence, accuracy and computational speed.

Index Terms— Nonlinear circuits, Modeling, Newton-Raphson
method, Simulation.

I. INTRODUCTION

NONLINEAR elements are ubiquitous in power systems.
Whether they are magnetic, arcing, or power electronic in

nature, nonlinearities have a significant impact on the system
voltages and currents, and therefore require accurate and
efficient techniques of analysis under transient and steady-state
conditions. Conventional techniques used for the inclusion of
nonlinear elements in EMTP-type programs include the Com-
pensation Method and the Network Equivalent’s Method [1].
Both these methods derive their effectiveness from separating
the linear part of the network from the non-linear part, and
then using an iterative technique based on Newton-Raphson
(N-R) to arrive at the solution. In the Compensation Method,
compensation theorem in conjunction with triangular factor-
ization of nodal equations is used to separate the nonlinear
element from the linear part of the network. While in the
Network Equivalent’s method, the N-R iterative process is
confined to the nodes where the nonlinear element is connected
by reducing the linear part of the network to an equivalent.
However, one of the fundamental limitations of these methods
is that in the presence of multiple nonlinear elements in the
network, a simultaneous solution of nonlinear equations using
N-R is required, which puts a restriction on the convergence,
accuracy and efficiency of the overall solution. This is because
the full Jacobian matrix has to be dealt with in every iteration.
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Another limitation of the above methods is that proper initial
conditions are required to ensure convergence to the correct
AC steady-state solution. The speed of convergence is slower
if the simulation is started from zero initial conditions.

An alternate approach- Transmission Line Modeling (TLM)
-for modeling lumped networks containing both linear
and nonlinear elements was first proposed by Johns and
O’Brien [2] for the analysis of transistor circuits. They showed
that the formulation resulting from using the TLM method is
similar to the one obtained by using an implicit numerical
integration scheme such as the Trapezoidal rule, thereby
making the TLM model unconditionally stable. TLM also
offered the advantage of physically interpreting the numerical
errors as parasitic inductance and capacitance. Later Hui and
Christopoulos [3]–[5], in a series of articles, developed a com-
prehensive formulation for a TLM based discrete transform
technique for solving linear integro-differential equations and
extended its application to model power electronics. More
recently, the TLM technique has been used to solve finite
element problems [6], [7].

This paper proposes a new application of the TLM method
for the transient simulation of systems with multiple nonlinear
elements. The main advantage of using the TLM method
to address this problem is that it effectively decouples the
nonlinear elements from each other as well as from the linear
part of the network. Thus, the nonlinear elements can be solved
individually, rather than simultaneously, using N-R iteration.
Furthermore, using the TLM technique a large network can
be split into smaller sub-networks which can be solved faster
than the original network. This could be a very promising
application for real-time digital simulation. The basic principle
of the TLM method is described in Section II where the TLM
models for lumped linear and nonlinear elements are presented
and the solution process is explained. A detailed case study
of a nonlinear bridge circuit is presented in Section III. The
performance of the TLM method, in terms of convergence,
accuracy and CPU time requirement, is compared with that of
the conventional N-R method and the results are presented in
Section IV. Finally, Section V presents the conclusions of the
study.

II. BASIC TLM METHODOLOGY

A. TLM Models for Lumped Linear Elements

The surge or characteristic impedance of a loss-less trans-
mission line is given as Zo =

√

L/C. Depending on the values
of L and C, the line can be made predominantly inductive or
capacitive.

The TLM model for a linear inductor (Fig. 1(B)) consists
of a short-circuited loss-less line with surge impedance ZL =
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Fig. 1. (A) Linear element, (B) TLM Model (C) Thévénin Equivalent

∆t/2L, where ∆ti/2 is the travel time of the voltage or current
waves on the line. For calculating those waves numerically, it
also becomes the time-step of the transient simulation. From
the Thévénin equivalent shown in Fig. 1(C), the voltage across
the inductor at the nth time-step is given as:

nvL = ZL · niL + 2 · nvi
L (1)

where nvi
L is the incident voltage pulse and niL is the inductor

current, at the nth time-step. From transmission line theory
nvL is also equal to the sum of the incident pulse nvi

L and
the reflected pulse nvr

L, i.e.,

nvL = nvi
L + nvr

L (2)

For the short-circuit at the far end the reflection coefficient is
-1. Thus, the reflected pulse nvr

L will become inverted and act
as the incident pulse for the next time-step, i.e.,

n+1v
i
L = − nvr

L = nvi
L − nvL (3)

Similar voltage equations can be developed for linear cou-
pled inductors.

The TLM model for a linear capacitor (Fig. 1(B)) consists
of a open-circuited loss-less line with surge impedance ZC =
2C/∆t. From the Thévénin equivalent in Fig. 1(C), the voltage
across the capacitor at the nth time-step can be expressed as:

nvC = ZC · niC + 2 · nvi
C (4)

= nvi
C + nvr

C (5)

For the open-circuit at the far end the reflection coefficient is
+1. Thus, the voltage pulse will be reflected without inversion
and becomes the incident pulse for the next time-step, i.e.,

n+1v
i
C = + nvr

C = nvC − nvi
C (6)

The TLM model for a linear resistor R will be simply:

nvR = R · niR (7)

It can be easily shown that the TLM models for L and
C are identical to discrete-time companion models obtained
using the Trapezoidal rule. Furthermore, it can be shown that
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Fig. 2. (A) TLM model of a nonlinear element (B) Associated N-R discrete
circuit

the TLM capacitor model has a small associated inductance of
LC = ∆t2/4C and that the TLM inductor model has a small
associated capacitance of CL = ∆t2/4L. These associated
elements LC and CL are also present in the models obtained
using Trapezoidal rule, but they are usually treated as modeling
errors. If ∆t is large, these errors are large, and if ∆t is small,
the errors become small as well. A physical interpretation of
these errors can be derived by recognizing that real inductors
do have stray capacitances and that real capacitors also have
stray inductances. The parasitic components introduced by the
TLM models are similar to stray components in real inductors
and capacitors. Thus, the TLM method allows us to estimate
the modeling errors in terms of parasitic inductances and
capacitances and choose a proper value of ∆t that might
reduce those errors.

B. TLM Model for a Non-linear Element

Fig. 2(A) shows a nonlinear element Ru connected by a
loss-less transmission line, with surge impedance Zu and travel
time ∆t/2, to the network. At the nth iteration, the network
launches a pulse nvi into the nonlinear branch, which becomes
an incident pulses vi

u on the nonlinear element at ∆t/2. A
reflected pulse produced by the nonlinear element vr

u becomes
the next incident pulse n+1v

r on the network at ∆t. Let the
nonlinear element be described as follows:

iu = fu(vu) (8)

The incident and reflected voltage pulses at the nonlinear
element are related to the current pulse through the following
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equation:

iu =
1

Zu

(

vi
u − vr

u

)

(9)

Also, from tranmission line theory,

vu = vi
u + vr

u (10)

Substituting (9) and (10) into (8), the reflected pulse from the
nonlinear element can be obtained as follows:

vi
u − vr

u = Zu ∗ f
(

vi
u + vr

u

)

(11)

(11) is a single nonlinear equation which is independent
of the rest of the network, and therefore it can be solved
individually by N-R. Similar equations can be developed for
other nonlinear elements in the network. Fig. 2(B) shows the
discrete circuit associated with N-R solution for the nonlinear
element Ru, where

g(nv) =

(

diu
dvu

)

v= nv

and I(nv, ni) = ni − g nv (12)

From (12) it can be seen that the conductance g across the
terminals of the network changes with every iteration of N-R.
This has the effect of changing the network nodal admittance
matrix at every iteration. Alternately, if the nonlinearity is
expressed as:

vu = fu(iu) (13)

Then the reflected pulse from the nonlinear element can be
obtained as:

vi
u + vr

u = fu

(

vi
u + vr

u

Zu

)

(14)

The choice of the surge impedance Zu is arbitrary and its
value influences the speed of convergence of the solution.
If Zu is chosen such that it matches the final value of Ru

at convergence, then the reflected wave from the nonlinear
element is zero, and the solution is obtained in one iteration.
Of course, since this matched value is not known a priori,
reflections or iterations must continue until convergence to the
final solution.

C. TLM Network Solution

Let N be a general network to which inductors, capacitors
and nonlinear elements are connected externally to ports.
Each of these three groups of elements are represented using
TLM models. Assuming that all other elements such as linear
resistors, independent voltage and current sources and any
linear controlled sources, are inside N , the TLM procedure
operates by transmitting pulses along the transmission lines.
The overall model is discrete in time since the pulses remain
constant in magnitude during their transit back and forth on
the lines with travel time ∆t/2.

Assume that the sources within N are emitting pulses
corresponding the same time period ∆t. At time t = 0 the
sources will inject pulses out of the ports of N . These pulses
will travel along the lines, be reflected and travel back towards
N . At time t = ∆t the pulses will be incident upon N and will
scatter into all the ports of N . These reflected pulses together
with new injections from the sources are again launched into

the lines and the process repeats. For a synchronous operation
all lines have the same delay ∆t.

Let the incident and reflected pulses at time t = ∆t be given
as:

nv
i = [ nvi

1 nvi
2 . . . nvi

k]T (15)

nv
r = [ nvr

1 nvr
2 . . . nvr

k]T (16)

Now, pulses are only incident upon and reflected into branches
which are also ports. Therefore, the values of incident and
reflected pulses are set to be zero on branches which are not
ports. Thus for p ports, nvi

q = 0 and nvr
q = 0 for q > p. Let

I = [I1 I2 . . . Ik]T (17)

E = [E1 E2 . . . Ek]T (18)

be the independent current sources in branches and voltage
sources across branches respectively. Also, let Yb be the
branch admittance matrix. For the first p branches this ma-
trix will contain diagonal entries corresponding to the surge
impedances of the transmission lines. The remaining matrix
elements (p + 1 to k) correspond to linear resistors and linear
controlled sources of the network.

The equivalent nodal source vector I at the nth time-step
is given by

nI = A(I − YbE − 2Yb nv
i) (19)

where A is the reduced incidence matrix. The nodal admit-
tance matrix is given as:

Y = A Yb A
T (20)

The network solution in terms of the nodal voltages nv at the
nth time-step is obtained by solving

nv = Y
−1

nI (21)

Then, the reflected pulses are calculated from the fact that
the sum of the incident and reflected voltage pulses at a node
must equal the nodal voltage. Thus,

nv
r = A

T
nv − nv

i (22)

The reflected pulses now travel back on the lines to the same
ports, or they are transmitted to adjacent networks. Thus,

n+1v
i = C nv

r (23)

where C is the connection matrix with elements of 1 to
describe how the lines are connected.

The TLM solution repeats equations (19), (21)-(23)at every
time-step. If there are multiple nonlinear elements connected
to the network, the TLM procedure advances to the next
time-step only when the individual solutions for all nonlinear
elements have converged, thereby maintaining synchronism.
For a simultaneous N-R solution, Y

−1 in (21) must be
calculated at every iteration. However, in the TLM solution,
Y remains unchanged from iteration to iteration since its
entries are the Zu’s of the transmission lines and other linear
elements; hence, Y

−1 needs to be calculated only once at the
beginning of the simulation.
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III. CASE STUDY - NONLINEAR BRIDGE CIRCUIT

Fig. 3 shows a bridge circuit [8] containing four nonlinear
resistors (Rku, k = 2, 3, 5, 6), two linear resistors (R1 and
R4), one linear inductor L and two independent sources
(e(t)andj(t)). Resistors R3u and R5u are characterized by the
equation iu = Is

[

evu/VT − 1
]

whereas the resistors R2u and
R6u are characterized by iu = −Is

[

e−vu/VT − 1
]

. With such
characteristics the operation of the bridge resembles that of
a full-wave diode rectifier. This circuit, whose parameters are
given in Table I has been used to compare the performance
of the full N-R method with that of the TLM method. The
comparison of the two methods was made on the criteria of
convergence (number of iterations), accuracy (RMS error in
fundamental currents and voltages) and CPU time requirement
under two starting conditions: (1) zero initial conditions and
(2) matched initial conditions. The two methods were coded
in MATLAB and executed on a AMD Athlon XP 1.8 GHz
processor running Linux.

A. Full N-R Solution

The Full N-R problem is to find x ∈ R
3 such that

f(x) = 0, f : R
3 7→ R

3 (24)

with

x = [va vb vc]
T and f = [f1 f2 f3]

T (25)

where the nonlinear functions of the bridge obtained using
nodal analysis are given as:

f1 = Is(e
vb−va

VT − 1) − Is(e
va−vc

VT − 1)

+
∆t

2L
(vm − va) + IL(t − ∆t) (26)

f2 = −R4Is(e
vb−va

VT − 1) − R4Is(e
vb

VT − 1)

+(vc − vb) − R4j(t) (27)

f3 = R4Is(e
vc−va

VT − 1) + R4Is(e
vc

VT − 1)

−(vc − vb) + R4j(t) (28)

TABLE I

CIRCUIT DATA FOR THE CASE STUDY

Parameter Value
R1,R4 1 kΩ

L 1 mH
e(t) 10 cos(ωt)
j(t) 10−3cos(ωt)
Is 10−14 A
VT 26 mV
ω 377 rad/s

ZL,Zku 500Ω

where

vm =
1

1
R1

+ ∆t
2L

[

e

R1
+

va∆t

2L
− IL(t − ∆t)

]

(29)

and

IL(t − ∆t) =
∆t

2L
[vm(t − ∆t) − va(t − ∆t)] . (30)

The solution of (24) is given as:

x
k+1 = x

k − J
−1

f(xk) (31)

where J =
(

df

dx

)

xk

is the Jacobian. The convergence criteria,
for the Full N-R iteration, are as follows:

‖ x
k+1 − x

k ‖< εx and ‖ f
(

x
k+1
)

‖< εf . (32)

with εx and εf set at 10−5.

B. TLM Solution

The TLM model for the nonlinear bridge is obtained by
replacing L and Rku (k = 2, 3, 5, 6) by their individual TLM
models and subsequently by their Thévénin equivalent’s. The
surge impedances for the lines are ZL for the inductor and
Zku (k = 2, 3, 5, 6) for the nonlinear resistors. At each time-
step the TLM solution executes (19), (21)-(23), where

nv
i = [nvi

L nvi
2u nvi

3u nvi
5u nvi

6u]T (33)

A =









−1 0 0 0 0
1 −1 −1 0 0
0 1 0 −1 0
0 0 1 0 −1









(34)

nI =













e(t)
R1

− vi

L

ZL

2vi

L

ZL
− 2vi

2u

Z2u
− 2vi

3u

Z3u

2vi

2u

Z2u
− 2vi

5u

Z5u
− j(t)

2vi

3u

Z3u
− 2vi

6u

Z6u
− j(t)













(35)

and
C = diag [−1 1 1 1 1 ] . (36)

In addition, within every time-step, the reflected pulses
nvr

ku, (k = 2, 3, 5, 6) from the nonlinear resistors are obtained
by solving the following four equations independently using
N-R:

n+1v
i
ku − nvr

ku = ±ZkuIs

(

e
±

(n+1v
i
ku

+ nv
r
ku)

VT − 1

)

(37)

The convergence criteria for the TLM solution are the same
as in (32).
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IV. RESULTS AND DISCUSSION

A. Comparison of Convergence, Accuracy and Execution Time

Under DC conditions with E = 10V , j = 1mA and zero
initial conditions, the TLM method converged within 3 itera-
tions to the final solution of [va vb vc]

T = [6.15 0.69 5.45]T

with an absolute error tolerance of 10−5, whereas the Full
N-R method failed to converge to the specified tolerance. If
ZL and Zku(k = 2, 3, 5, 6) are set to 467Ω, instead of 500Ω
as shown in Table I then the TLM solution converged in one
iteration.

Under AC steady-state conditions, Figures 4(A) and 4(B)
show the percentage RMS error in the voltage vo(= vc − vb)
and CPU time, for a simulation of 0.03s, for the two methods
starting with zero initial conditions, as the simulation time
step ∆t is varied from 5µs to 600µs. The high error and
high CPU time of the Full N-R method is obvious from these
figures; the y-axis is plotted in log scale to underscore the large
difference in values for the two methods. Furthermore, in Fig.
4(A) discontinuities can be observed at certain points on the
curve for the Full N-R method; these points denote the time-
steps where the method did not converge. The TLM method,
on the other hand, showed no convergence problems at any
time-step. The full N-R method failed to converge beyond
∆t = 200µs whereas the TLM was convergent all the way up
to ∆t = 600µs.

Figures 5(A) and 5(B) show the percentage RMS error in
vo and CPU time for the two methods starting with initial
conditions [va vb vc]

T = [6 1 5]T . The full N-R method’s
error started increasing over 5% around ∆t = 10 µs, however,
the TLM method’s error stayed less than 3% up to ∆t = 600
µs. The large difference in error in the two methods can be
seen from Fig. 5(A). The CPU time requirement for the full
N-R method under matched initial conditions was found to be
fairly close (Fig. 5(B)) to that of the TLM method.

B. Comparison of Time-domain Results

Figures 6, 7 and 8 show the simulation results of i1, va and
vo of the bridge, for the two methods using two different time
steps ∆t = 5µs and ∆t = 100µs, starting from zero initial
conditions. At ∆t = 100µs, the full N-R method (Figures
6(A), 7(A) and 8(A)) start off is not very impressive and it
is even prone to divergence, as shown by the spike near t =
0.005s. Also using the Full N-R method, even though the
wave-shape of the curves for ∆t = 100µs is similar to those
for ∆t = 5µs, there is still a significant steady-state error.
Using the TLM method (Figures 6(B), 7(B) and 8(B)) the
results for the two time-steps are almost coincident with a
very small error in steady-state.

Fig. 9 shows the detail of i(t) for the Full N-R method
and the TLM method, when the simulations were started with
matched initial conditions. For the Full N-R method (Fig.
9(A)) numerical oscillations can be noticed at ∆t = 100µs,
while for the TLM method (Fig. 9(B)) no such oscillations are
noticeable. The above time-domain results were verified using
SPICE and PSCAD/EMTDC using detailed device models.
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V. CONCLUSIONS

This paper presented the application of the TLM method for
the modeling and simulation of systems containing multiple
nonlinearities. The TLM method is a stable and accurate
modeling method which offers numerous advantages over the
conventional N-R method of simultaneously solving nonlinear
equations for such systems. Among its benefits are faster
convergence, higher accuracy and lesser CPU time require-
ment compared to the Full N-R method. As such, one of the
promising applications of the TLM method is for real-time
digital simulation.
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