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Abstract— In transmission line transient analyses, a single real 
transformation matrix can be used to obtain exact modes when 
the analyzed line is transposed. Other interesting characteristics 
of this matrix transformation are: frequency independent, line 
parameter independent, identical for voltage and current 
determination. Using, for example, Clarke’s matrix, some 
mathematical simplifications are obtained as well as a model 
which can be applied directly in programs based on time domain. 
This model does not need the convolution procedures to deal with 
phase-mode transformation. In EMTP programs, Clarke’s 
matrix can be represented by ideal transformers. With this 
representation, the electrical values at any line point can be 
accessed for phase domain or mode domain using Clarke’s 
matrix or its inverse matrix. 

For non-transposed lines, the results of Clarke’s matrix 
application are not exact. In this paper, non-symmetrical and 
non-transposed three-phase line samples are analyzed with the 
proposed matrix application (Clarke’s matrix). This matrix 
application is analyzed using comparisons between its results and 
the exact eigenvalues. The ZC (characteristic impedance) and γ 
(propagation function) are also used to determine the accuracy of 
proposed matrix application. For these analyses, the considered 
frequency range is from 10 Hz to 1 MHz. Basing on the 
comparison errors, the accuracy of the proposed matrix 
application is investigated for some transmission line designs, 
determining the types where the proposed method can be 
applied. 
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frequency-time transformation, mode domain, transformation 
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I.  INTRODUCTION 
HE mathematical representations of transmission lines 
have some difficulties in time domain because the 

longitudinal parameters are frequency dependent [1, 2, 3]. 
Some models apply phase-mode transformation, considering 
the problem in mode domain and improving the frequency 
dependent parameter representation [4, 5, 6]. So, the 
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transformation matrices are also frequency dependent, because 
the Z and Y line matrices depend on the frequency. Some real 
transformation matrices have been used as an alternative to 
these analyses. For ideally transposed lines, a single real 
transformation matrix can be used, obtaining exact modes and 
diagonal mode matrices [4]. For a single real transformation 
matrix based on line geometrical characteristics and the Clarke 
matrix, an interesting model is created to analyze transmission 
line transients [7]. This model is applied to the transmission 
lines, without convolution procedures to deal with 
phase-mode transformation, and it works with a single, real, 
frequency independent, line parameter independent 
transformation. Because of this, electrical values can be 
determined in phase domain or mode domain at any line point 
using a simple matrix multiplication. For symmetrical 
non-transposed lines, the results of a single real 
transformation matrix application (called quasi-modes) are not 
exact modes and the errors can be calculated. 

Considering typical non-transposed three-phase lines, the 
eigenvector and eigenvalue analyses are presented, using the 
Clarke transformation matrix, to lines with and without a 
vertical symmetry plane [8, 9, 10]. The exact modes are 
compared with the Clarke matrix obtained results, showing 
these quasi-modes errors are reasonably small for 440 kV 
three-phase line samples [11]. Besides the comparisons 
between exact eigenvalues and quasi-modes, the curves of ZC 
and γ values that depend on the frequency are also shown. 
These results present small differences between exact values 
and quasi-mode results. In future, it will be investigate what is 
the best way to implement the proposed model in 
eletromagmetic transient analyses using EMTP type programs. 

II.  MATHEMATICAL DEVELOPMENT 
When transmission lines are submitted to electrical 

transients, the relations among transversal voltages (uF) and 
longitudinal currents (iF) in phase domain, can be expressed 
by the following equations (Z being the per unit length 
longitudinal impedance matrix and, Y, the per unit length 
transversal admittance matrix): 

− = ⋅ − = ⋅
du
dx

Z i and
di
dx

Y uF
F

F
F

     (1) 

The modal transformation matrices are identified by TV and 
Ti and they determine the per unit length longitudinal 
impedance matrix (ZMD) and transversal admittance matrix 
(YMD) in mode domain. In most cases, the TV and TI 
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transformation matrices are different and they have complex 
elements. These elements depend on the frequency. 

If the modal transformation is applied, the equation set (1), 
in phase domain, will change into next equation set in mode 
domain (index MD): 

( )
−

⋅
= ⋅ ⋅

−
−

d T u
dx

Z T iV MD
I MD

1
1  

 
and                                          (2)  
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The ZMD and YMD matrices are described by: 

Z T Z T and Y T Y TMD V I MD I V= ⋅ ⋅ = ⋅ ⋅− −1 1     (3) 
The proposed model changes these matrices into the Clarke 

transformation (TCL) for three-phase lines. So: 
11 −− ⋅⋅=⋅⋅= CLCLMDCLCLCLMDCL TYTYandTZTZ  (4) 

The ZC (characteristic impedance) values are described by: 

MDCL

MDCL
CMDCL

MD

MD
CMD Y

ZZand
Y
ZZ ==          (5) 

The γ (propagation function) values are described by: 

MDCLMDCLMDCLMDMDMD YZandYZ ⋅=⋅= γγ   (6) 

The exact eigenvalues are: 
11 −− ⋅⋅⋅=⋅⋅⋅= IIVV TZYTTYZTλ           (7) 

The quasi-mode results are: 
11 −− ⋅⋅⋅=⋅⋅⋅= CLCLCLCLCLCL TZYTorTYZT λλ    (8) 

For the ideally transposed lines, the quasi-mode matrices 
(equations (4 and 8)) are diagonal. In case of non-transposed 
lines, these are assumed diagonal matrices and the 
non-diagonal elements can be neglected, if the obtained errors 
are non-significant. With this assumption, the proposed 
transformation is applied to time domain without the need of 
convolution procedures, because it is real, frequency 
independent, and identical for voltage and current matrices. 
For non-symmetrical and non-transposed lines, it does not 
lead to exact modes. This paper shows the error of such 
transformations as quasi-modes is reasonably small for 
eigenvalues analyses. 

III.  SYMMETRICAL CASE 
It is considered a line whose conductors are disposed in 

such a way that there is a vertical symmetry plane and two 
external phases not centered in such plane (this two phases 
being symmetrically disposed), as shown in Figure 1. 

Suppose the application of Clarke transformation matrix, 
TCL, to both Z and Y matrices in phase domain, at a generic 
point of the line. These matrices have similar structures and 
the transformation results are also similar. In the assumption 
of an ideal line transposition, it is considered that a 
transposition cycle length is reasonably shorter than a quarter 
wavelength, for the dominant frequency range of phenomena 
to study. The assumption of ideal transposition can be applied 
to most usual conditions, because the errors are reasonably 

small. 
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Fig. 1.  Three-phase line symmetry plane. 
 

The detailed discussion of this property is not within the 
scope of this paper. The Z and Y matrices are defined by: 
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            (9) 

Assuming that ground wires are considered implicitly, the 
Clarke transformation converts the three-phase line into three 
uncoupled mode circuits. The ZMDCL matrix is: 
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where A is the self phase impedance value and D is the 
coupling impedance value (average values). The YMDCL matrix 
has a similar structure to the ZMDCL matrix. 

Considering a non-transposed symmetrical line, the length 
longitudinal impedance matrix is described by: 
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The coupling impedance values are shown in Figure 2. 
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Fig. 2. Non-transposed symmetrical line coupling impedance values. 
 

For this case, the ZMD is described by: 
( )
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The YMDCL matrix is similar to the ZMDCL one. Considering 
TI and TV as the ZNT eigenvector matrices, the eigenvalue 
matrix is calculated through equation (7). If the exact 
transformation matrices are changed into the Clarke 
transformation, the following will be obtained: 

T Y Z TCL NT NT CL NTCL⋅ ⋅ ⋅ =−1 λ                 (13) 

The exact eigenvalues were compared with the results of 
equation (13), using the line structure shown in figure 3.  The 
modulus ratio results are shown in Figure 4 where the greatest 
error is approximately 0.25 % for mode α about 10 kHz. The 
errors presented in Figure 4 are quite small and indicate that 
the Clarke transformation can be a good alternative for 
transient analyses of typical non−transposed three-phase lines 
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with a symmetry plane in a range of frequency from 10 Hz to 
1 MHz. In this comparison, only the main diagonal elements 
of λ and λNTCL matrices are used. These elements are 
identified as α, β and 0 modes or quasi-modes. 
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Fig. 3.  Real three-phase line structure. 
 

 
Fig. 4. Comparison between exact eigenvalues and quasi-mode results for 
symmetrical non-transposed three-phase line. 

IV.  NON-SYMMETRICAL CASES 
Two designs are considered and shown in Figure 5. In the 

first case (Design I), the three phases are centered in the same 
vertical plane. The phase conductors are lined vertically and 
one or two ground wires can be used, depending on the typical 
tower structure of the analyzed system. The second case 
(Design II) does not present a vertical symmetry plane and the 
phase conductors are considered in a triangular distribution. 
The application of only one ground wire is more common to 
this case. 

Considering the two designs shown in Figure 5, they can 
be represented by the same equations because the Z and Y 
matrices have similar structures for both cases. The Z and Y 
matrices can be described by equation (14). 
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Design I Design II  
Fig. 5. Tree-phase line designs without vertical symmetry plane. 
 

Representing the eigenvector matrices for these cases as TI 
and TV, the eigenvalue matrix is calculated by equation (7) 
and represented by λ. 
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The ZMDCL matrix is described by: 
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If the exact transformation matrices are changed into the 
Clarke transformation, the following will be obtained: 

T Y Z TCL NP NP CL NPCL⋅ ⋅ ⋅ =−1 λ                 (16) 

The exact eigenvalues (λ) were compared with the 
quasi−mode results of equation (16), using the line structures 
shown in Figure 5 and the modulus ratio values are shown in 
Figure 6 for design I and in Figure 7 for design II. 
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Fig. 5.  Two designs for non-symmetrical three-phase line analyses. 
 

 
Fig. 6.  Comparison between exact eigenvalues and quasi-mode results for 
design I (without vertical symmetry plane, non transposed case). 
 

The results of Figure 6 demonstrate the Clarke 
transformation can also be a good alternative for transient 
analyses. These results present differences in modulus 
between the exact eigenvalues and the Clarke transformation 
results are lower than 0.9%, considering a wide frequency 
range from 10 Hz to 1 MHz. In this case, the highest 



 4

difference, about 0.9%, is associated to mode β. 
In Figure 7, the greatest errors are also associated to the 

mode β for each frequency value. The difference modulus is 
not higher than 1% in the same frequency range of Figure 6. 
Based on results of the last two figures, the Clarke matrix can 
be applied as a good approximation to the eigenvector 
matrices of non-transposed typical three-phase transmission 
lines without symmetry plane. The obtained quasi-modes 
present acceptable errors for exact eigenvalues. 

 
Fig. 7. Comparison between exact eigenvalues and quasi-mode results for 
design II (with the three phases centered in the same vertical plane, non 
transposed case). 
 

The results related to designs I and II demonstrate that the 
eigenvector matrices can be change into the Clarke matrix 
(TCL), because the errors are reasonably small. Considering 
electromagnetic transient simulations, adequate models should 
be investigated for application to these transmission line types. 
Depending on the applied on the applied model, the errors 
generated by Clarke transformation can be increase because 
the interaction between the model and the Clarke matrix. In 
the other hands, the elements of Clarke matrix can be used as 
initial values for calculation of eigenvectors and eigenvalues 
through Newton-Raphson methods. Synthetic circuits 
(modified π-circuits) have been checked in association to the 
Clarke transformation. These synthetic circuits represent 
frequency dependence of line longitudinal parameters using 
RL parallel branches. However, the effects of increase of the 
number of these branches are not studied hardly yet and for 
design II, some electromagnetic transient simulations lead 
inaccurate results. Probably, with the increase of number of 
RL parallel branches, better results can be got using the 
association between the Clarke transformation and the 
synthetic circuits. 

For Figures 4, 6 and 7, the eigenvectors and the 
eigenvalues are calculated by a Newton-Raphson method 
using the Clarke matrix elements as initial values for the first 
frequency value of the considered range (10 Hz to 1 MHz). 
For each frequency range value, the equations (7, 13 and 16) 
are applied and the differences between quasi-modes and 
exact values are calculated. 

V.  THE ZC AND γ PARAMETERS 
The ZC (characteristic impedance) parameter has similar 

characteristics to the eigenvalue error analyses. Using the line 
structure of Figure 3, the modulus and the angle of ZC 
parameter for each mode is calculated through equation (5). 
Figure 8 shows the ZC modulus results for symmetrical line 
considering non-transposed case (Figures 2 and 3). Figure 9 
shows the ZC angles for the same case. 

The next two figures demonstrated that the ZC parameter 
present similar characteristics to the eigenvalue analyses. The 
exact ZC parameters are coincident to the Clarke 
transformation ones for mode β. This result is similar to the 
result presents in Figure 4 where the errors for mode β are 
null. The results for modes α and 0 are also similar when 
Figures 4, 8 and 9 are compared. 

 
Fig. 8.  The ZC modulus – symmetrical line. 
 

 
Fig. 9.  The ZC angle – symmetrical line. 
 

 
Fig. 10.  The ZC modulus – design II. 
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If the design II considering non-transposed case is used, the 
previous conclusions are confirmed. So, the ZC results of this 
case, summarily presented in Figure 10, are similar to the 
eigenvalue analyses (see Figure 7). 

The γ parameter analyses show different results to the 
eigenvalue error analyses. For all analyzed structure lines in 
this paper, the exact γ parameters are equal to the ones 
obtained with the Clarke transformation. The next three 
figures summarized these results. 

 
Fig. 11.  The γ angle – symmetrical line. 
 

 
Fig. 12.  The γ modulus – design II. 
 

 
Fig. 13.  The γ angle – design II. 
 

The ZC and γ analyses show different results when 
compared to the eigenvalue errors analyses. Applying the 
Clarke transformation associated to the ZC and γ parameters, 
the errors are only related to the ZC parameters. This 

characteristic could lead to more simple and more efficient 
error minimization routines, because the error are 
concentrated on only one parameter. The future development 
will check if it is possible. 

VI.  CONCLUSIONS 
For typical three-phase transmission lines, eigenvector, 

eigenvalue, characteristic impedance (ZC) and propagation 
function (γ) analyses were made in this paper, using a single 
real transformation matrix (the Clarke matrix). This allows the 
determination of electrical values, such as voltage and current, 
at any line point in phase domain or in mode domain with a 
simple matrix multiplication. For transposed lines, with or 
without symmetry plane, the Clarke matrix is an eigenvector 
matrix and the quasi-mode results are exact. The advantages 
of the Clarke matrix are: single, real, frequency independent. 
The Clarke matrix is not influenced by line parameters and it 
is identical to the voltage and the current. These all 
advantages can be considered in applications to typical 
non-transposed three-phase transmission lines without 
symmetry plane. In these cases, the errors between exact 
eigenvalues and quasi-modes are reasonably small. This is 
confirmed through λ error analyses in this paper. 

The ZC and γ parameter analyses show that the errors of the 
Clarke matrix application are only concentrated on the ZC 
parameters. More simple and more efficient error 
minimization routines could be obtained using this relation 
between the proposed model errors and the ZC parameters. 
Detailed analyses about the association between the single real 
transformation matrix and electromagnetic transient models 
can be performed based on the results of this paper. The 
objective of these detailed analyses will be to determine what 
associations can lead to the lowest errors for electromagnetic 
transient simulations. 

VII.  APPENDIX 
The Clarke transformation matrix can be described by: 

⎥
⎥
⎥
⎥
⎥
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3
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6
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CLT
                    (A.1) 

Each line of the TCL matrix corresponds to one mode. The 
first line of the TCL matrix is related to the mode α, the second 
line is associated to the mode β and the third line corresponds 
to the mode 0 (homopolar mode). The TCL matrix is applied 
to equations (4, 8, 13 and 16). 
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