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 Abstract—The use of diakoptical technique can considerably 

reduces the computational burden when formulating network 
equations. Nodal analysis with diakoptical segregation of the plant 
component can efficiently modifies the necessary equations when 
the system undergoes topological changes. It avoids changes of the 
whole network equations and only the relevant parts of the 
network equations are considered. This particular benefits 
simulations that undergo frequent switching. In this paper, a 
state-space diakoptical segregation method is applied to transient 
simulation of a.c systems under different fault conditions.  

For comparison, the transient response of the proposed 
technique is compared with the EMTDC simulation. Two test 
scenarios based on the Lower South Island of the New Zealand 
system were set up. The scenarios looked at the performance of 
the proposed method under symmetrical and asymmetrical 
line-to-ground faults.  
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I. INTRODUCTION 

D IGITAL simulations in the time domain via 
electromagnetic transient program (EMTP, EMTDC or 

ATP) has become the industrial standard. They play a critical 
part in design and operation of modern power systems where 
analytical solution is prohibitive. These simulations provide the 
basis for; system control testing, equipment protection design, 
performance testing under disturbance/fault conditions to name 
but a few. Transient simulation based on state space theory 
[1]-[3] were once popular, however the high computation cost 
has caused interest to diminish even though it has many 
advantages [4]-[5]. One such methodology specifically 
developed to analyse the dynamic behavior of HVDC systems 
is the Transient Converter Simulation (TCS) program [6]. A 
diakoptically based nodal approach provides an ideal 
environment for the analysis of system with frequently 
switching components such as converters. It avoids involving 
the whole network in unnecessary topological changes and 

only modifies the relevant network equations to represent the 
new system state. Furthermore, the nodal approach becomes 
more efficient if sparsity of coefficient matrices is used to 
improve computational efficiency.  
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The general state variable approach requires the 
identification of independent state variables and formulation of 
the appropriate equations [7]. Arbitrary use of inductor current 
and capacitor voltage is not sufficient due to the possible 
presence of inductor cut-sets or loops of capacitors and voltage 
sources. Use of graph theory or linear matrix methods can find 
the appropriate state variables. However, when the system is 
undergoing topological changes due to frequent switchings, 
this identifying of state variables and formation of state 
equations is not practical due to the computational effort to 
identify independent state variables and form the state 
equations. The diakoptically segregation of the sub-network 
presented avoids the need to identify independent state 
variables. In the present approach a diakoptical technique is 
used as an efficient method of forming the state equations for 
systems which may have frequently switching components in 
them. There is a slight loss of generality, for example every 
capacitive sub-network must have a connection to ground, but 
this is minor to the enormous computational benefits. 

In the TCS algorithm, the power system is represented by an 
equivalent network of lumped inductive, resistive and 
capacitive. The set of network equations are formulated from 
diakoptical segregation of the sub-network where the nodes are 
partitioned into three possible groups depending on what type 
of branches are connected to them. This results in a set of first 
order differential equations being developed and the system 
matrices in compact form containing their indexing 
information, assigns node numbers for branch elements and 
interconnection information. The state variable solution can 
then be obtained using numerical integration technique, such as 
implicit trapezoidal integration. The state equations are solved 
at each time-step iteratively, with no restriction imposed on the 
selection of the integration time step length. Thus, when 
changes in the system topology occur, the network equations, 
the connection matrix and the step length can be modified to 
fall exactly on the time of the changes to represent the new 
conditions.  

In this paper, a new implementation of the TCS algorithm is 
applied to an a.c. system for prediction of transient response 
under symmetric and asymmetric fault conditions. Minimal 
modification of the network equations and connection matrix to 



 

cater for the new changes during fault is achieved by 
segregation of the sub-networks.  To validate the proposed 
method, two different fault scenarios are simulated and the 
results are compared with those obtained using 
PSCAD/EMTDC. 

 

II. TCS DIAKOPTICS FORMULATION 
Consider a network with n  nodes is systematically 

expanded into its elementary resistive r , inductive , capacitive 
and current source s  branches. Diakoptical segregation of 

the network, subdivides the network nodes into three parts 
according to the type of branches connected to them: 

l
c

α  nodes: At least one capacitive branch. 
β  nodes: At least one resistive branch but no capacitive 

branches. 
γ  nodes: Only inductive branches. 
The resulting branch-node incidence (connection) matrices 

for the r ,  and  branches are l c T
rnK , T

lnK  and T
cnK  

respectively. The elements in the branch-node incidence 
matrices are determined as follows: 

T
bnK =1; If node n is the sending end of branch b 
T
bnK =-1; If node n is the receiving end of branch b 
T
bnK =0; If branch b is not connected to node n 

By restricting the number of possible network configuration 
to those commonly encountered in practical systems, the 
efficiency of the solution can be improved significantly. The 
restrictions are [8]: 

1. every capacitive branch sub-network has at least one 
connection to the system reference (ground node) 

2. resistive branch sub-networks have at least one 
connection to either the system reference or an α  
node. 

3. inductive branch sub-networks have at least one 
connection to the system reference or an α  or β  
node. 

Neglecting current sources, the fundamental branches that 
result from the restrictions and their diakoptical network 
equations can be written as: 

Resistive branches                    

( )1 T T
r rr r rI R K V K Vα α β β

−= +                     (1) 

Inductive branches          

( ) 0T T T
l ll l ll l l l l

dE L I R I K V K V K V
dt α α β β γ γ− − + + + =  (2) 

Capacitive branches                  

( T
c cc c

d )I C K V
dt α α=                                (3) 

 
Applying the node type definitions, the nodal equations for 

each node type become: 
0

0
0

c r l

r l

l

K K K
K K
K

α α α

β β

γ

+ + =
+ =

=

                            (4)     

Combining eqns. 1-4, a set of diakoptical network equations 
in the form of eqn. 5 and 6 can be formulated by taking 
capacitive node voltage Vα and inductive branch current lI  as 
the state variables. The state equations and dependent variable 
equations are expressed as in eqns. 7-11. 
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Dependent variables 
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,R L  and  are the resistance, inductance and capacitance 

matrices respectively. and  are unit matrices of order 

and  respectively 

C

rrU llU
r l

To solve for the state variables at each time step, implicit 
trapezoidal approximation is used owing to its good stability, 
accuracy and simplicity.  The state equations can be written as 
in (12) and the change in the state variable is defined in 
(13). 

x∆

                                  ( ,l )x f I Vα=                                        (12) 

                               (
2 t t h
h )x x x +∆ = +                                 (13) 

An iterative procedure can be used to determine  t hx +  as 
follows: 

1) For an initial estimates, it is assumed t h tx x+ =  

2) An intermediate t hx +  based on the t hx +  estimate is 
then calculated. 

( )
2t h t t t h
hx x x x+ += + +  

3) An update of the  t hx +  can be calculated from the 

intermediate t hx +  value from the state equation. 

[ ] [ ]t h t h t hx A x B u+ += + +  

Steps 2) and 3) are performed iteratively until convergence 
is reached. In the case that convergence fails, the step length is 
halved and the iterative procedure is restarted. Dependent state 
variables can be calculated at the end of each time step  or at 
the end of the simulation.  

h

III. SIMULATION MODEL AND RESULTS 
Each component in an a.c. power system can be modelled 

by its equivalent circuit model defined in terms of passive 
elements. These elementary branches form the basis of the state 
equations and dependent variable equations (3)-(7).  

 
1. Generators: these are modelled by an e.m.f. source voltage 

with their equivalent R-R//L impedance. 
2. Transformers: they are represented using two windings 

model depending on the type of magnetic circuit and on the 
connections of the terminals and the neutrals. i.e. delta or 
wye. Core losses are represented internally with an 
equivalent shunt resistance across each winding in the 
transformer. 

3. Transmission lines: these are modelled rigorously by the 
three phase PI models and hence capable of incorporating 
non symmetric condition. 

4. Loads: the real and reactive power components are 
represented by its equivalent resistance and inductance 
respectively. 

 
The test system (Fig. 1) is taken from the Lower South 

Island of the New Zealand system. It consists of three 

generators, five delta/star-g transformers, three double circuit 
transmission lines, two single circuit transmission lines and 
three passive loads. The system contains 84 state variables 
correspond to the system’s inductive branch currents and 
capacitive node voltages. For a credible validation of the 
proposed technique, the TCS based transient simulation is 
compared to those simulated using PSCAD/EMTDC. Two 
types of fault (three phase line-to-ground and single phase 
line-to-ground) are simulated at the fault location indicated by 
the black crosses in Fig. 1. The two crosses indicate the fault is 
simulated on a double cct. transmission line. 

 
Fig. 1. Lower South Island of the New Zealand system 

 
A. Symmetrical Fault 

A duration of 2.5 cycles three-phase line-to-ground fault on 
the Invercargill-Tiwai transmission line is simulated. Complete 
collapse of all phase voltages at the receiving end and 
over-current at the corresponding sending and receiving end 
branches are expected.  

Figs. 2-10 shows the Tiwai 220kV busbar voltages, 
Invercargill-Tiwai sending end branch currents and the fault 
currents.  The TCS and PSCAD/EMTDC simulations are 
plotted in solid and dotted line respectively and their 
differences are shown at the bottom half of each figure. As 
indicated, the difference is relatively small during steady-state, 
but became larger when there is a step change. By comparing 
the simulation characteristics such as the dynamic response, 
indicates a close agreement between the TCS results and 
PSCAD/EMTDC simulations. 
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Fig. 2. Busbar voltage at Tiwai 220kV phase A 
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Fig. 3. Busbar voltage at Tiwai 220kV phase B 
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Fig. 4. Busbar voltage at Tiwai 220kV phase C 
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Fig. 5. Sending end Invercargill-Tiwai branch current, phase A 
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Fig. 6. Sending end Invercargill-Tiwai branch current, phase B 
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Fig. 7. Sending end Invercargill-Tiwai branch current, phase C 
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Fig. 8. Fault current, phase A 
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Fig. 9. Fault current, phase A 
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Fig. 10. Fault current, phase C 

 
B. Asymmetrical Fault 

While the results obtained under symmetric fault condition 
revealed good qualitative match, it is often necessary to look at 
the performance under unbalance condition as well before any 
conclusion can be made. A single phase line-to-ground fault of 
two and a half cycles duration at Invercargill-Tiwai 
transmission line is simulated in this case.  Figs. 11-14 show the 
Tiwai 220kV busbar voltages and the Invercargill-Tiwai 

sending end currents. The three phase fault currents are 
depicted in Figs. 15-17. The results as shown are again in 
agreement with the PSCAD/EMTDC simulation despite small 
differences in the magnitude during step changes in the system 
topology. The ability in predicting asymmetrical transient 
response verifies the reliability of the proposed TCS algorithm 
in transient simulation.   
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Fig. 11. Busbar voltage at Tiwai 220kV phase A 
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Fig. 12. Busbar voltage at Tiwai 220kV phase B 
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Fig. 13. Sending end Invercargill-Tiwai branch current, phase A 
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Fig. 14. Sending end Invercargill-Tiwai branch current, phase B 
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Fig. 15. Fault current, phase A 
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Fig. 16. Fault current, phase B 
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Fig. 17. Fault current, phase C 

 

IV. CONCLUSION 
In this paper, a diakoptical state variable approach is used to 

provide an efficient method of forming the system state 
equations. It overcomes the need to identify the set of 
independent state variables by diakoptical segregation of the 
sub-netowks and therefore is not affected by the presence of 
inductor cut-sets and loops of capacitors. Furthermore, for 
systems that undergo topological changes due to frequent 
switching, the diakoptical technique avoids changes of the 
whole network equations and only the relevant parts of the 
network equations are considered. 

The performance of the proposed technique is compared 
with the PSCAD/EMTDC simulation based on the two test 
scenarios. The agreement between the two fundamentally 
different algorithms verifies that the new implementation of the 
TCS algorithm can be used with confidence in a.c. systems. 
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