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 Abstract--In this paper, techniques are described which 

demonstrate how a highly detailed internal transformer model 
can be obtained systematically with Matlab and how it can be 
prepared for subsequent transient analysis. The input of such a 
model will mainly be the description of the cross section of a 
single transformer leg, including all turns and windings.  From 
the input data a three phase equivalent circuit is calculated and 
corresponding nodal impedance matrices are found for 
appropriate frequencies. Vector fitting is then applied which 
produces an excellent rational function approximation to the 
nodal impedance matrix in the valid frequency range. From the 
approximation an equivalent circuit can be extracted and 
implemented in circuit simulation software. A small but novel 
step makes it possible to compute not only the voltage 
distribution but also the internal currents from the extracted 
equivalent circuit. Finally a new circuit extraction technique is 
proposed for vector fitted impedance matrices for more efficient 
computation.  
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I.  NOMENCLATURE 
R,L,C Resistance, inductance and capacitance 
M Mutual inductance 
A Incidence matrix of a directed graph as defined in the  

appendix 
Z Impedance matrix as defined in the appendix 
Y Admittance matrix equal to the inverse of Z 
n Number of nodes in internal transformer model 
N Number of transformer terminals corresponding to  

the number of nodes in the external transformer 
model 

P Number of measurement probes equal to n-N 

II.  INTRODUCTION 
HE high frequency content of power system transients 
due to fast breakers and power electronics makes high 
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frequency models of various power system components 
necessary in order to assess the risk of unexpected component 
failures. The use of fast vacuum breakers instead of SF6-
breakers due to environmental aspects is an example of a 
possible source of very fast transients. Transformers are an 
example of a component, of which the internal voltage 
distribution under transient voltage application can only be 
determined from a detailed high frequency model. Thus, 
easily applicable techniques have been gathered to assist in the 
making of detailed high frequency transformer models. The 
result is a mixture of well known and novel techniques. 

 
III.  MODELLING 

A.  Principles 
The modelling principles applied are chosen in such a way 

that arbitrary connections between turns are allowed. This is 
necessary if one wishes to model the high frequency effects of 
interleaved windings, positions of taps etc. Thus each turn 
must be modelled individually. This is done using lumped 
elements, i.e. ideal R, L and C components together with 
mutual inductance M between all inductances. Each 
inductance represents a single turn. The resulting equivalent 
circuit of three turns is outlined in fig. 1. Losses in dielectrics 
and the transformer core are modelled using complex 
permittivity and complex permeability, giving complex values 
for capacitance and inductance. 

 
Fig. 1.  Fundamental equivalent circuit for three arbitrary turns. Resistance 
and inductance of each turn are calculated, as well as the capacitance and 
mutual inductance between all turns. Each turn in the transformer has two 
nodes which, depending on the transformer design, can be connected to any 
other node. 

As the high frequencies are in focus, linearity of the 
resulting equivalent circuit is at first assumed, i.e. 
superposition of currents and voltages can be applied. The 
large amount of parameters makes it impossible to produce 
exact analytical expressions for transfer functions in the 
transformer. And even though the model is detailed, it will 
still have a limited frequency range. Having realized these two 
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facts, it seems natural to compute the model numerically in the 
frequency domain for discrete frequencies. Transient analysis 
in the time domain can be performed on such a model using 
discrete Fourier transforms. However, the frequency response 
of the model can also be used for producing much smaller 
equivalent circuits which approximate the computed 
frequency response in the valid frequency range using vector 
fitting. Using these simplified circuits, time domain 
simulations can be performed with standard circuit analysis 
software. 

The linearity makes it possible to compute the wanted 
voltages and currents in the frequency domain using the 
extended Roth’s diagram [1]. However, to avoid a model, 
which requires too much knowledge of topological matrices, 
the proposed model only uses one of the four topological 
matrices in Roth’s diagram, the incidence matrix A which 
undoubtedly is the most simple one. An apparent disadvantage 
of discarding the remaining topological matrices is that no 
accessible path in Roth’s diagram leads to the computation of 
internal currents if A is the only topological matrix available. 
However, this disadvantage can be overcome as it is still 
possible to calculate the internal currents by applying small 
modifications to A and the impedance matrix Z, a trick which 
apparently is not described in the literature. 

The definitions of A and Z are given in the appendix. The 
necessary modifications needed, if some or all of the currents 
are wanted, are explained in section IV. The described 
modifications mean that only one path in Roth’s diagram is 
required in order to calculate all internal currents and voltages, 
i.e. the path corresponding to the equation:  

 

UN  = (AtYA)-1 ⋅ IN                       (1) 
 
Here, UN and IN are voltage and current vectors which hold 

the node voltages and node currents respectively. The matrix 
(AtYA) and its inverse are denoted as the nodal admittance 
matrix NAM and the nodal impedance matrix NIM 
respectively.  

B.  Input data 
The choice of input data for a model is a compromise 

between user friendliness and generality. In this paper, the 
geometry of a cross section of a single transformer-leg is 
chosen as input (see fig. 4) together with information about 
how the turns are connected and how the materials behave as 
functions of frequency. More specifically, the geometry is 
described by the type and position of each turn with respect to 
the core and surrounding dielectrics. Though this approach 
may not seem especially user friendly, this level of detail is 
necessary in order to cover highly non-uniform windings as 
the double-layer winding where the distances between turns 
varies a lot. 

IV.  COMPUTATION TECHNIQUES 
Due to the huge number of nodes and components in the 

model, the equation system must be set up systematically from 
the input data. Having done that, the computation of the model 
can begin. The fundamental steps are as follows:  

A.  Fundamental steps 
1) Compute A from the connections of turns entered by 

the user. 
2) Compute R, L, C and M components from geometry 

assuming vacuum. Resistances R are computed at dc. 
Their frequency dependent behaviour will be 
accounted for in step 4. 

3) Start frequency loop. 
4) Compute self and mutual impedances at the given 

frequency from R, L and M and place them in Z as if 
the capacitances did not exist. Y is simply the inverse 
of Z. 

5) Calculate  a temporary NAM as: 
YRLM =AtYA              (2) 

6) Take advantage of the simple interpretation of the 
nodal admittance matrix of a circuit without mutual 
couplings and the fact that NAMs can be added [2]. 
Thus, the computed capacitances should be converted 
to admittances at the given frequency and added to 
the existing values at the correct positions in YRLM to 
produce the NAM of the complete system, YRLCM. 
The NIM ZRLCM can then be found by inversion. 

7) Unlike YRLCM, the NIM ZRLCM can be directly reduced. 
External components, including sources, must 
necessarily be connected to some of the nodes in 
order to perform a simulation. These nodes are in the 
following denoted terminals. Each row and column 
in ZRLCM corresponds to a specific node, so in order to 
obtain a terminal model, the rows and columns 
corresponding to a terminal should be kept and the 
remaining nodes should be discarded by removing 
the corresponding rows and columns. This leaves the 
user with an N-by-N matrix describing the external 
behaviour of the transformer at the given frequency 
seen from the N terminals. Thus, an external model 
has been found at the given frequency. 

8) Further more, if N more columns are extracted, the 
complete voltage distribution, consisting of n 
voltages, can be found be multiplying this extracted 
n-by-N sub matrix by a vector containing the N 
terminal currents. 

9) Repeat step 4-8 for all relevant frequencies. 
 
It is also possible to compute all internal currents. This can 

be done by adding a branch to the network for each current 
one wants to calculate. This branch should have one end 
floating and the other end should be connected to ground. As 
one end is floating, no current can run through it which means 
it does not affect the circuit. Instead it is affected by the circuit 
if it is mutually coupled to any other branch. If it is coupled to 
a single branch and the mutual impedance between them is 



equal to unity independent of the frequency, the voltage at the 
floating terminal will, at any time, attain the same value as the 
current running in the branch to which it is coupled. 

Only minor modifications must be applied to A and Z in 
order to insert this branch. This is done by enlarging the 
number of rows and columns in both A and Z by one for each 
current wanted and then adding the value 1 in the appropriate 
places.  This is shown in fig. 2 and 3. 

 

 
= Z 

 
 
1 Zmodified 

             1 1 
Fig. 2.  Sketch on how to modify Z in order to compute an internal current. 

Besides the diagonal element,  1 should be placed in the two elements 
corresponding to the line one wants to measure the current in. The current of 
interest will thus induce a voltage across the added branch which is identical 
to the current running in the line.  

B.  Example 
Consider a three-phase two-winding 10/0.4 kV transformer 

containing a total of 1500 turns per leg including the low 
voltage winding. This yields a total of 4500 turns. Thus the 
model will contain just as many R and L components together 
with around 20 million mutual inductances and, in worst case, 
just as many capacitances. 

 

 
= A 

 

Amodified 

  1 
Fig. 3.  Sketch on how to modify A in order to compute an internal current. 
The value 1 should simply be placed in the new corner element. 
 

ZRLCM is now approximately1 a 4500-by-4500 matrix. On a 
PC with Pentium® 4 CPU 2.60 GHz, inversion of such a 
matrix took approximately 2 minutes using Matlab. The 
inversions are by far the most time consuming calculations in 
the frequency loop, and as the loop contains two inversions, 
the total computing time per frequency is approximately four 
minutes. The computation of the R, L, C and M elements may 
also be quite time consuming but depends very much on the 
chosen formulas/finite element methods and the symmetry in 
the transformer. 

For each frequency the external model should be stored. 
The transformer has six terminals and when the external 
model is found (as described under step 7), the user is left 
with 36 elements compared to the original 20 million. 
However, if the complete voltage distribution is wanted, 6 
columns of ZRLCM should also be stored, giving a total of 
27000 elements. If all currents also need to be computed, the 
                     
1 The dimension of the square matrix ZRLCM is given by the number of nodes, 
so the actual dimensions of ZRLCM may be slightly smaller than the number of 
turns when interleaved windings are present. 

number of elements is approximately doubled. This number of 
elements can be reduced significantly, if only some of the 
voltages and currents are of interest.  

V.  COMPARISON WITH MEASUREMENTS 
The model is programmed in Matlab but is still being 

developed, so the parameter estimations are not that accurate 
yet. Still the modelling technique can be roughly tested in the 
frequency domain by comparing it to measurements 
performed on a single phase of a dry type three-phase 
transformer with removed core. The experimental results are 
taken from [3] and were simply carried out by applying a 
sinusoidal voltage at the terminal of a grounded winding and 
measuring the voltage response at one of the centre-taps of the 
winding. 

The parameters of the model, to which these experiments 
are compared, are based on the cross section of the actual 
winding as shown in fig. 4. The actual cross section is shown 
together with an output of a temporary graphical user interface 
added to the model. It can be seen that the turns are stacked in 
what may be denoted as columns, 6 per section. The model 
consists of one inductance per turn and takes into account that 
there are a different number of turns in each column as well as 
in each section. Simple formulas for the parameters have been 
given as a first approximation. 

 
 Fig. 4.  Winding cross section of a dry type transformer: At left a sketch of 
two of 16 sections each winding consists of. Each section contains 6 columns 
of turns. At right a photo of a single section. Note the varying number of turns 
per section. 

Resistance, self- and mutual impedance have been 
distributed correctly but the capacitances between columns are 
placed between the upper turns of each column. The turns of 
the low voltage side is, in this rough comparison, assumed to 
be perfectly grounded, though the low voltage side should of 
course be modelled precisely in order to get good results in 
the MHz-range. Capacitances between turns in a single 
column have not been included yet. The comparison between 
measurements and model is shown in fig. 5 and fig. 6. 

The agreement between model and experiments are for 
both magnitude and phase angle found to go from excellent to 
poor as the frequency approaches the MHz-range. At around 2 
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MHz the magnitude and phase angle of the model explode, 
and beyond 2 MHz there is absolutely no agreement between 
model and experiments. It is expected that good agreement 
can be obtained at several MHz when the parameter 
estimation has been fully developed. 

 
Fig. 5.  Measured and modelled magnitude of the voltage ratio between 
centre-tap and terminal as a function of frequency.  
 

  
Fig. 6.  Measured and modelled phase angle of the voltage ratio between 
centre-tap and terminal as a function of frequency. 

VI.  IMPLEMENTATION ISSUES 
In the previous sections focus has been on the behaviour in 

the frequency domain. However, with respect to applications 
to transient behaviour, time domain simulations are needed. 
This can, in many situations, be overcome by using Fourier 
techniques, but in order to simulate more complex systems 
with several transformers and surrounding nonlinear 
components, direct time domain simulations are more 
practical. One solution is to create a linear electrical network 
equivalent, which solely consists of frequency independent R, 
L and C components and behaves approximately as the 
complete transformer model in the frequency domain. This 
can be done using vector fitting as described in [4] and [5]. 
Though these papers focus on measured transformer models 
with respect to their external behaviour, the vector fitting 
technique may just as well be applied on theoretical models in 
order to avoid huge models or frequency dependent R, L and 

C components. It must be said though, that the corresponding 
equivalent circuit may contain negative parameters and in 
general it has no physical interpretation. Fortunately most 
software for transient analysis of electrical circuits can handle 
negative parameters including ATP EMTP and the blockset 
“SimPowerSystems” (SPS) for Simulink/ Matlab. 

As described in [6], Matlab computer code which can 
perform vector fitting on a matrix can be downloaded from the 
internet. In fig. 7-8 it can be seen that the code gives an 
excellent fit to the computed 1-by-1 impedance matrix of the 
transformer coil, described in section V. Passivity has been 
enforced using the simplistic approach described in [7], in 
order to obtain stable time domain simulations. 

Fig. 7.  Magnitude of transformer impedance as a function of frequency 
together with a 25 pole vector fit and the deviation between them. All three 
curves were computed for the same amount of frequencies, though only the 
deviation is plotted as points in order to visualize the applied frequencies. 

         
Fig. 8.  Phase angle of transformer impedance with 25 pole fit and deviations. 
 

The code described in [6] is also capable of extracting an 
equivalent circuit from a fitted NAM. By interpreting the 
transformer impedance as an admitance, an equivalent circuit 
was extracted from the fit and tested in SPS. The comparison 
is shown in fig. 9. The SPS-results were obtained for each 
frequency by measuring the voltage when injecting a current 
of 1 Ampere. In fig. 9 it can be seen, that the implementation 
is excellent except at frequencies close to the limit of the fitted 
frequency range. If a high accuracy is needed close to the 
limiting frequency, this can be achieved by extending the 
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fitted frequency range as demonstrated in fig. 10. 

      
Fig. 9.  Comparison between passive approximation and SPS-implementation. 
The SPS results were obtained by repetitive phasor solutions. 

 
Fig. 10.  Comparison with extended fitting range. 
 

In [6] it was explained, how a circuit can be extracted from 
a vector fitted NAM. However, it may sometimes be 
advantageous to fit the NIM instead. When dealing with the 
internal behaviour of transformers, this is normally the case as 
the number of internal voltages n one wishes to compute is 
usually much bigger than the number of terminals N. Let us 
denote the nodes, which are not connected to external objects, 
probes. The number of probes is then P = n-N. A nice 
property of the NIM is then, that all NIMs which hold the N 
columns extracted under step 8 in section IV, has the same 
behaviour seen from the n nodes, when the system described 
by the NIM is only connected to external components through 
the N terminals. This leaves p2 elements of the NIM free to 
vary. As a result, the computational cost of fitting the NIM is 
of the order O(n) when p is much greater than N, which 
should be compared to the order O(n2) which is the 
computational cost of fitting the NAM. Another advantage is, 
that passivity does only need to be enforced on the terminal 
part of the NIM, in order to assure input-output stability. 

In [2] it was explained how vector fitted impedances could 
be synthesised. But to extend the synthesis of impedances to 
the multi-terminal case, i.e. a vector fitted NIM, is not straight 
forward, as NIMs (unlike NAMs) can not in general be added. 
However, in the special case of a tree, NIMs can be added. 
This fact can be realised from equation 3 which is only valid 
when the incidence matrix A is square. This condition is only 
fulfilled when A describes a tree. 

 
(At(Z+∆Z)-1 A)-1 = A-1(Z+∆Z) A-t = A-1ZA-t + A-1∆ZA-t           (3) 
   

In the special case where A equals a unit matrix, the NIM 
(AtYA)-1 becomes identical to the impedance matrix Z, and A 
represents a rake equivalent, i.e. a tree where all n branches 
meet in the ground node. Thus, all n diagonal elements of the 
NIM can be interpreted as branch-impedances in such a rake 

equivalent whereas the remaining elements can be interpreted 
as mutual impedances between the branches. In [2] it was 
shown how vector fitted impedances can be synthesised and 
thus, what remains is a description on how to synthesise 
vector fitted mutual impedances, which is given in the 
following text: 

The outcome of a vector fit is, for each matrix element, a 
sum of rational functions which approximates the actual 
element. The form of this sum is given in equation 4. 

 

∑
= −

+⋅+
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Here, s equals j⋅ω, k is the number of poles and the 
remaining symbols denote the coefficients of the fit. Only the 
poles am and the residues rm are allowed to be complex and 
when that happens, they always come in complex conjugate 
pairs. 

In order to synthesise mutual impedances given by (4), 
standard transformer-models are applied as well as positive 
and negative R, L and C elements. SPS includes transformer 
models where the inductive part or the resistive part of the 
magnetising branch can be removed. As the induced open-
circuit voltage on the secondary side of a 1:1 transformer 
model equals the voltage drop across the magnetising branch, 
the d and e terms of equation 4 can be synthesised by a 
resistive and inductive magnetising branch respectively. 

Further more, a purely resistive magnetising branch can be 
chosen to equal 1Ω. This can be utilized when the 
contribution from the remaining rand a terms are synthesised: 

Imagine a branch which, when seen from outside the 
branch, has a frequency dependent magnetic coupling to 
another branch. By opening the branch, two sub-branches in 
parallel, with impedances ZA and ZB, are revealed. If sub-
branch A is coupled by 1 Ohm to another complete branch C, 
the voltage induced from branch A to branch C will 
numerically be identical to the current running in sub-branch 
A, if SI-units are applied. Thus, the problem of finding a 
mutual impedance which can be described on the form of (4), 
has been reduced to finding the ratio between the current in 
sub-branch A and the total current Itotal = IA + IB as shown in 
(5). 
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The synthesis problem is then solved, if the fraction to the 

right ZB/(ZA + ZB ) can be written on the form of (4) for both 
complex and real-valued poles. In order to represent a set of 
conjugate complex poles, the fraction must equal: 

 

)aja(s
rjr

)aja(s
rjr

ZZ
Z

21

21

21

21

BA

B

⋅−−
⋅−

+
⋅+−

⋅+
=

+
                (6) 

 
By insertion it can be derived that the above equation is 
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fulfilled when ZA is a series RLC-branch and ZB is a series 
RC-branch. The R, L and C elements can then be found as: 
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For real poles, a2 and r2 must equal zero and the fractions of 
equation 6 reduces to a single fraction on the form: 
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The parameters of a real pole are thus: 
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As linear transformers does not contain nonreciprocal 

mutual impedance, the NIM becomes symmetrical and we do 
not have to worry about the mutual impedance from the 
secondary to the primary side. Finally it must be said, that the 
circuit elements for the synthesis of mutual impedance 
necessarily will influence on the involved branch impedances. 
This influence can be cancelled by series connecting 
corresponding impedances with opposite sign.  

VII.  DISCUSSION 
The presented modelling technique shows good results 

when compared to the measurements. However, the parameter 
estimation is not fully developed yet and consequently, the 
accuracy is still not acceptable in the MHz-range. It seems 
likely that detailed estimation of the parameters will lead to 
good agreement in the MHz-range. 

For time domain simulation, circuits can be extracted from 
vector fitted NAMs with software available on the internet. 
However, with respect to voltage distributions and internal 
currents it is much more efficient to extract the circuit from a 
partly vector fitted NIM as the number of elements which 
need to be fitted and thus the number of circuit elements are 
proportional to n when N<<n and not n2 like the standard 
procedure. 

VIII.  CONCLUSIONS 
A modelling procedure for power transformers has been 

presented in order to obtain reasonable accuracy in the MHz 
range. The model is very flexible, hereby giving the 
possibility of a large variety of transformer-types being 
modelled, e.g. foil windings and double-layer windings.  

The modelling technique itself is based on topological 
matrices in order to treat the large amount of components 
systematically. The treatment given here has shown that it is 

sufficient to understand only a single equation (eq. 1) to 
compute not only internal voltages but also internal currents, 
by applying some modifications to A and Z=Y-1. 

Finally a method for circuit extraction of vector fitted nodal 
impedance matrices has been presented which is more 
efficient than the standard procedure when a large amount of 
internal voltages and currents must be computed. 

IX.  APPENDIX 
The definitions given in this appendix correspond to those 

found in [1]. 

A.  Definition of the A-matrix 
The A-matrix contains R rows corresponding to the number 

of lines in the given system. The number of columns 
corresponds to the number of ungrounded nodes in the 
system. All elements of each row are zero except the elements 
corresponding to the two nodes to which the line is connected. 
These elements hold a 1 and a -1. The sign defines the 
orientation of the lines with respect to the line currents. The 
current is defined positive from 1 to -1. 

B.  Definition of the Z-matrix 
The diagonal of the Z-matrix contains the self-impedances 

of all the lines in the system, e.g. R + j⋅ω⋅L. Mutual 
impedances j⋅ω⋅M are placed in the off-diagonal elements. The 
Z-matrix should be symmetrical. Note that the signs of the 
mutual impedances depend on the chosen line orientations 
with respect to the physical orientations of the coils or 
components. 
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